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Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers

T. I. Lakoba and D. J. Kaup
Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699-5815

~Received 26 June 1998!

We represent a pulse in the strongly dispersion managed fiber as a linear superposition of Hermite-Gaussian
harmonics, with the zeroth harmonic being a chirped Gaussian with periodically varying width. We obtain the
same conditions for the stationary pulse propagation as were obtained earlier by the variational method.
Moreover, we find a simple approximate formula for the pulse shape, which accounts for the numerically
observed transition of that shape from a hyperbolic secant to the Gaussian. Finally, using the same approach,
we systematically derive the equations for the evolution of a pulse under a general perturbation. This system-
atic derivation justifies the validity of similar equations obtained earlier from the conservation laws.
@S1063-651X~98!10211-8#

PACS number~s!: 03.40.Kf, 42.65.Tg, 42.81.Dp
is

to
Re
b
n
-t
on
a
o

an
h
lin

e
M

t t
R
p
th

f t
s

be
th
o

fu
l

a
u
in

th
n

nd
ot
h

ther
he
the
er-
the

ua-
ich
the
as

of
s
the

the
d-
r of
ct
of

r
the
of

s-
a

e-
.44
, the
th

ne

er
ng
I. INTRODUCTION

Recent experimental@1–5#, numerical@6–10#, and ana-
lytical @11–16# studies have demonstrated that periodic d
persion compensation, or dispersion management~DM!, can
be used to significantly improve the performance of soli
transmission systems. Moreover, it has been shown in
@17# that in a DM system, pulses in the soliton format can
transmitted, without being corrupted by certain pertubatio
over longer distances than pulses in both the non-return
zero ~NRZ! and the RZ formats at zero average dispersi
Here we have used the term ‘‘soliton’’ when referring to
pulse in a DM system, to indicate that stable propagation
such a pulse occurs via the balance of the nonlinearity
the small average dispersion in the fiber. To distinguis
stable pulse in a DM system from the conventional, non
ear Schro¨dinger~NLS! soliton in a fiber with uniform disper-
sion, we will refer to the former as the DM soliton. Th
difference between the DM soliton and the RZ pulse in a D
system is that the RZ pulse is supposed to propagate a
zero average dispersion. Thus, the results reported in
@17# indicate that the DM technique opens the way to u
grade the already installed telecommunication lines for
data transmission in the soliton regime.

The two main reasons that are behind the success o
DM technique for the soliton transmission are as follow
First, the periodic concatenation of segments of the fi
with opposite signs of dispersion allows one to make
average dispersion very small, which reduces the Gord
Haus~GH! jitter for the soliton@18#. Moreover, the DM soli-
ton has greater energy than its NLS counterpart, which
ther reduces the GH jitter@7,5,16#. Second, the high loca
dispersion in each of the segments of the dispersion m
reduces the detrimental effect on the soliton by the fo
wave-mixing fields, which arise in collisions of solitons
different wavelength channels@19,6,10#. ~It is interesting to
note that a reason similar to this last one was behind
original introduction of the DM for the NRZ transmissio
@20#.!

Two significantly different regimes, those of weak a
strong DM, have been considered in the literature. In b
these regimes, the periodLmapof the dispersion map is muc
PRE 581063-651X/98/58~5!/6728~14!/$15.00
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less than both the nonlinear lengthLnonlin and theaverage
dispersion lengthsLaverage. Moreover, in the strong DM re-
gime, thelocal dispersion lengthL local is also much less than
both Lnonlin and Laverage. In the weak DM regime, all these
three lengths are of the same order of magnitude. In o
words, in the strong DM regime, the local dispersion is t
dominant factor affecting the pulse evolution, whereas in
weak DM regime, the effects of the nonlinearity and disp
sion are comparable in magnitude. Consequently, due to
existence of theonly small parameter, sayLmap/Lnonlin, in
the weak DM regime, one can reduce the propagation eq
tion to the leading-order NLS equation, corrections to wh
can be systematically computed. Thus, all properties of
DM soliton in the weak DM regime can be considered
known, at least in principle@21–23,11,12#. However, it is the
strong DM regime that yields the stronger suppression
both the GH timing jitter and the jitter induced by collision
between solitons in different channels. At the same time,
existence of an additionallarge parameter,Lnonlin/L local, in
the strong DM regime, renders the results obtained for
weak DM formally invalid. Therefore, many numerical stu
ies have been performed, which discovered that a numbe
properties of a soliton in the strong DM regime are in distin
contrast with properties of the NLS soliton. Here is a list
some of those properties:

~i! The DM soliton is strongly chirped. Moreover, in orde
to stably propagate in a fiber, it has to be launched at
beginning of the dispersion map with a particular value
the chirp@24,25,8#.

~ii ! For sufficiently strong periodic variations of the di
persion, the shape of the DM soliton can be closer to
Gaussian than to the convential hyperbolic secant~‘‘sech’’ !.
This is manifested by the increase of the pulse tim
bandwidth product from 0.32 for the sech up to about 0
for the Gaussian. For even stronger dispersion variations
DM soliton has an even higher value of the time-bandwid
product ('0.6) @26,8#.

~iii ! Moreover, the pulse changes its shape within o
period of the dispersion map.

~iv! The energy of the DM soliton is considerably larg
than the energy of the NLS soliton, with both solitons havi
6728 © 1998 The American Physical Society
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the same average width and propagating at the same ave
dispersion@26#.

~v! The DM soliton can propagate over very long d
tances even if the average dispersion in the system is ze
negative~i.e., normal! @27,28#.

An explanation of those properties has been a subject
large number of analytical studies. The first group of tho
used the variational method with a Gaussian trial function
obtain conditions for the amplitude, width, and initial chi
with which a DM soliton can propagate stationari
@29,30,16,31,32#. These conditions for stationary propag
tion explained properties~i!, ~iv!, ~v! listed above. However
the variational method with a Gaussian trial function cou
not possibly explain the observed shape of a DM soliton@i.e.,
properties~ii ! and~iii !#. The second group of studies@33–35#
used an averaging technique based on the Lie transforma
to obtain a leading-order propagation equation of the for

iqZ1 1
2 qTT1q~ uqu22CT2!50, ~1.1!

whereq is some average pulse profile,Z andT are the evo-
lution and spatial variables, respectively, and the constanC
depends on the parameters of the dispersion map. By
merically finding a stationary solution of Eq.~1.1!, the au-
thors of Refs.@33,34# have been able to explain properti
~i!, ~ii !, ~iv!, and~v! above. However, sinceq was an average
field, property~iii ! still could not be explained. Also, sinc
Eq. ~1.1! is not integrable, then noexplicit expressions for
the stationary DM soliton could have been found within th
approach.

The approach that we present here allows us to explain
of the properties~i!–~v!. This approach is systematic, thu
allowing one to rigorously account for the shape of the D
soliton. At the same time, it yieldsexplicit expressions for
the parameters of the stationary DM soliton, with those
pressions being, in the leading order, the same ones obta
earlier by the variational method. The key step in our a
proach is an expansion of the DM soliton over a complete
of certain Hermite-Gaussian functions. We show that
DM soliton can be represented as an infinite sum of th
functions~which we will call harmonics!, with the dominant,
zeroth, harmonic being the chirped Gaussian pulse. Ta
into account the next nontrivial~see below! harmonic pro-
vides a very good approximation to the shape of the stat
ary DM soliton. We emphasize that the form in which w
present our results isexplicit. That is, all parameters of th
DM soliton are given by explicit~and rather simple! expres-
sions that depend only on the soliton’s minimum width, p
vided that the parameters of the dispersion map are fixed
there is no losses and periodic amplification in the fiber.~In
the case with losses and amplification, those expressions
be easily evaluated numerically by calculating a small nu
ber of certain definite integrals.!

As we mentioned above, the main advantage of using
DM soliton instead of the NLS soliton as an informatio
carrier is that the DM soliton is less susceptible to pertur
tions than its NLS counterpart. Thus, we also present a
turbation theory for the DM soliton acted upon by anarbi-
trary perturbation. An example of a specific perturbatio
which is produced by frequency filtering, is also consider
age
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The body of this work is organized as follows. In Sec.
we present the expansion of the DM soliton over a comp
set of Hermite-Gaussian harmonics. Using the equations
just the first two even harmonics, we recover the conditio
for the stationary propagation of the DM soliton, which we
earlier obtained by the variational method@16,31,32#. In Sec.
III, we refine these conditions by taking into account the n
even harmonic, and also obtain the correction to the shap
the DM soliton compared to the Gaussian. In Sec. IV,
develop the perturbation theory for the DM soliton. Secti
V contains the summary of this work. Secs. II and IV ea
have two subsections, with the first subsection containing
main results and the second subsection containing rema
We also note that the main results of Sections II and III w
announced in Ref.@36#.

II. EXPANSION OF THE DM SOLITON OVER THE
HERMITE –GAUSSIAN HARMONICS

A. Results

The propagation equation in the strong DM regime can
written in the following nondimensional form~see, e.g.,
@16#!:

iuz1
1

2
D~z!utt1eF1

2
D0utt1G~z!uuuu2G50. ~2.1!

Here u(z,t) is proportional to the envelope of the electr
field, z andt are the distance along the fiber and the retard
time, D(z) is the periodic~with periodLmap) dispersion co-
efficient:

D~z!5H D1 , 0,mod~z,Lmap!,L1 ,

D2 , L1,mod~z,Lmap!,Lmap,
~2.2!

such that the average ofD(z) over the map periodLmap is
zero:

D1L11D2L250. ~2.3!

The variables in Eq.~2.1! are normalized@16# so as to have

Lmap51, uD1L1u5uD2L2u51. ~2.4!

The small parametere in Eq. ~2.1! is the ratio of the local
dispersion length to the nonlinear length~for a pulse with
unit amplitude and unit width!; it characterizes the
‘‘strength’’ of the DM ~see also a discussion in@16#!. Fi-
nally, eD0 is the average dispersion coefficient, andG(z) is
a periodic function, with periodLamp, which accounts for
losses and periodic amplification~see Chap. 7 in@37#!. For
the idealized lossless fiber,G(z)[1.

To obtain a pulse solution of Eq.~2.1!, we use the stan-
dard approach of any perturbation theory. Namely, we fi
exhibit thegeneralsolution of that equation withe50, and
then study how the presence of a small perturbation~i.e.,
when 0,e!1) will modify that solution. To exhibit the
general solution of Eq.~2.1! with e50, we first perform the
following transformation of variables:
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~z,t!→S z,j5
t2tc~z!

T0A11D2/T0
4D , ~2.5!

where

D[D~z!5E
0

z

D~z8!dz81D0 , ~2.6!

dtc~z!

dz
5v0D~z!, ~2.7!

andT0 , v0 , andD0 are constants. Next, we substitute in
Eq. ~2.1! with e50 the solution of the following form:

u5c~0!~z! f ~j!expF i H j2D

2T0
2

1v0jT0A11
D2

T0
4
1f~z!J G ,

~2.8!

thus obtaining:

iS cz
~0!1

c~0!DD

2T0
4S 11

D2

T0
4 D D f 1

c~0!D

2T0
2S 11

D2

T0
4 D ~ f jj2j2f !50,

~2.9!

provided that we take

df

dz
5

v0
2

2
D. ~2.10!

Here and below we omit arguments of functions when th
are obvious. The operator forf in Eq. ~2.9! is easily recog-
nized as the linear Schro¨dinger equation for the quantum
harmonic oscillator, whose solutions are the Hermi
Gaussian functions. Hence the general solution of Eq.~2.1!
with e50 is

u~0!5 (
n50

`

ancn
~0!~z!Hn~j!expF2

j2

2 S 12
iD

T0
2D

1 iv0jT0A11
D2

T0
4
1 ifG , ~2.11!

where

cn
~0!~z!5

1

A11 iD/T0
2S 12 iD/T0

2

11 iD/T0
2D n/2

[
exp@2 inarctan~D/T0

2!#

A11 iD/T0
2

, ~2.12!

an are arbitrary constants, andHn(j) are the Hermite poly-
nomials satisfying

Hn922jHn812nHn50 ~2.13!

~here prime denotes differentiation!. See also Remarks 1–
about the solution~2.11! in Section II B below.
y

-

Next, we seek a solution of Eq.~2.1! with 0,e!1 using
the method of multiple scales. We introduce the sequenc
independent evolution variables

z05z, z15ez, etc. ~2.14a!

so that

]z5]z0
1e]z1

1•••, ~2.14b!

and look for the solution in the form~2.11!, where now we
set

an5an
~0!~z1 , . . . !1ean

~1!~z0 ,z1 , . . . !1•••. ~2.15!

In what follows, we will only consider the slow evolutions o
the an

(0) terms and ignore thean
(1) terms on the grounds tha

they introduce corrections in the next order in the small
rametere. We also note that those latter terms may be
sponsible for the radiation of small dispersive waves by
DM soliton.

Now we make the following two important assumptio
about the perturbed solution~2.11!. First, we use the fact tha
the ‘‘core’’ of the DM soliton is represented by the chirpe
Gaussian@i.e., the term withn50 in the expansion~2.11!#,
with the higher Hermite-Gaussian harmonics providing c
rections to the pulse shape. Thus, we require that the am
tude of the zeroth harmonic be dominant in the expans
~2.11!:

ua0
~0!u@uan

~0!u, n51,2,3, . . . ~2.16!

As will be shown below, the ratiosuan
(0)/a0

(0)u (n
51,2, . . . ) donot depend on the small parametere. @Note:
one can easily show that a similar situation also occurs fo
weakly nonlinear string satisfying the equations

uxx2utt5eu3, u~0!5u~1!50.]

Even with thestrong inequality ~2.16!, one can quantita-
tively explain the numerically observed transition of the D
soliton’s shape from the sech-like to that with a higher tim
bandwidth product, as described in Sec. I. Also, this stro
inequality guarantees that the shape of the DM soliton w
not behave chaotically inz, at least for a sufficiently smalle.
This statement is an analog of the well-known theorem d
to Izrailev and Chirikov@38#, according to which the motion
of a weakly nonlinear chain of oscillators will never becom
chaotic provided that the energy is originally distribut
among only a small number of the lowest harmonics~this is
also known as the Fermi-Pasta-Ulam phenomenon!.

Second, we will allow the pulse parametersT0 , D0 , v0 ,
tc , andf to be functions of the slow variablez1 :

T05T0~z1!, D05D0~z1!, v05v0~z1!,
~2.17!

tc5tc~z0 ,z1!, f5f~z0 ,z1!,

This is not really necessary since the set of functio

$Hn(j)e2j2/2%n50
` , over which we expand the solution,

complete in the space of square-integrable functions. H
ever, we will still use the superfluous degrees of freed
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allowed by Eq.~2.17! because this significantly simplifie
the following analysis and, in addition, will be required
Sec. IV where we develop the perturbation theory for
DM soliton.

We now substitute the expansion~2.11! into Eq.~2.1! and
then collect the coefficients at each termHn(j)e2j2/2. Since
q.
e

the set of the Hermite-Gaussian functions is complete, t
the coefficient at each term must vanish individually and
all orders ine. Obviously, all coefficients of ordere0 iden-
tically vanish since the expansion~2.11! is the zeroth order
solution of Eq.~2.1!. Then in the ordere1, the coefficient
multiplying thenth term yields
i ]z0
an

~1!1 i ȧn
~0!1an12

~0! F ~n12!~n11!S D02Ḋ0

2T0
2

2
i Ṫ0

T0
D G1an11

~0! H ~n11!F2v̇0T0S 12
iD

T0
2D 2

i

T0
~ ṫc2v0D0!G J 1an

~0!

3F ~n1 1
2 !

2T0
2

~Ḋ02D0!1
i Ṫ0

2T0

1v0S ṫc2
v0D0

2 D 2ḟG1an21
~0! H 1

2 F2v̇0T0S 11
iD

T0
2D 1

i

T0
~ ṫc2v0D0!G J 1an22

~0!

3F 1

4 S D02Ḋ0

2T0
2

1
i Ṫ0

T0
D G1

sin@p~n11!/2#einua0
~0!ua0

~0!u2G~z0!

23n/2A2~n/2!!A11 D2/T0
4

1 (
m>1,

~m1n! is even

~21!~m2n!/2~m1n21!!! G~z0!

2nA2n!A11 D2/T0
4

$a0
~0!2am

~0!* ei ~m1n!u12ua0
~0!u2am

~0!ei ~n2m!u%50. ~2.18!
tion

.

Here the overdot stands for]z1
, u5arctan@D(z0)/T0

2#, and

(2k21)!![133353•••(2k21). Note that the term with
sinp(n11)/2, which comes form the nonlinear term in E
~2.1!, is present only for evenn and vanishes for oddn. In
the derivation of the next term,($•••%, we used the strong
inequality~2.16! and thus neglected terms likea0

(0)am
(0)2 and

am
(0)3. We also used, in addition to Eq.~2.13!, the following

relations satisfied by the Hermite polynomials~see, e.g.,
@39#!:

Hn8~j!52nHn21~j!, ~2.19a!

Hn11~j!22jHn~j!12nHn21~j!50, ~2.19b!

E
2`

`

djHn~j!Hm~j!e2j2
52nn!Apdnm , ~2.19c!
E
2`

`

djHn~j!Hm~j!e22j2

5Ap

2
~21!~m2n!/2~m1n21!!!, ~m1n! is even.

~2.19d!

The equation fori ȧn
(0) follows from Eq.~2.18! after we im-

pose the standard requirement thatan
(1) not grow linearly

with z0 . SinceD(z) is a periodic function with periodLmap

[1 and, moreover, since we assume that the amplifica
period Lamp is an integer factor ofLmap, then that require-
ment amounts to averaging Eqs.~2.18! over one map period
Thus, taking into account that allan

(0) are only functions of
the slow variablez1 , and denoting
I n5E
0

1

dz
G~z!

A11 D2/T0
4

einu~z![E
0

1 dzG~z!

A11D2/T0
4S 11 iD/T0

2

12 iD/T0
2D n/2

, ~2.20!

we obtain

i ȧn
~0!1an12

~0! F ~n12!~n11!S D02Ḋ0

2T0
2

2
i Ṫ0

T0
D G1an11

~0! F ~n11!S 2v̇0T02
i

T0
~ ṫc2v0D02v̇0@ 1

2 sgn~D1L1!1D0!# D G1an
~0!
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3F ~n1 1
2 !

2T0
2 ~Ḋ02D0!1

i Ṫ0

2T0
1v0S ṫc2

1

2
v0D0D2ḟG1an21

~0! F1

2 S 2v̇0T01
i

T0
~ ṫc2v0D02v̇0@ 1

2 sgn~D1L1!1D0!# D G
1an22

~0! F1

4S D02Ḋ0

2T0
2

1
i Ṫ0

T0
D G1

sin@p~n11!/2#a0
~0!ua0

~0!u2

23n/2A2~n/2!!
I n1 (

m>1,
~m1n! is even

~21!~m2n!/2~m1n21!!!

2nA2n!

3$a0
~0!2am

~0!* I m1n12ua0
~0!u2am

~0!I n2m%50. ~2.21!
i-
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From Eqs.~2.21!, we immediately observe that the cond
tions for decoupling harmonics with evenn from those with
odd n are

v̇050, ṫc5v0D0 . ~2.22!

Thus, if initially no harmonics with oddn are excited and
conditions~2.22! hold, then such harmonics will never ap
pear in the evolution. Note that the second of Eqs.~2.22!
yields the same relation between theaveragevelocity of the
DM soliton @cf. Eq. ~2.7!#, its frequencyv0 , and the average
dispersionD0 that also holds in the case of uniform dispe
sion. This condition was earlier found in, e.g., Ref.@40# by
different means.

Now, if we seek astationarypulse solution of Eq.~2.1!,
we must set

Ḋ05Ṫ050. ~2.23!

Otherwise, if either of these conditions does not hold, th
the pulse’s width will increase without bound asz1 increases
@cf. Eq.~2.5!#. Under conditions~2.22! and~2.23!, Eq. ~2.21!
is simplified considerably, although it still represents an
finite system of coupled equations. We begin analyzing it
restricting our attention to the first two harmonics,n50 and
n52 @recall that all odd-numbered harmonics can be eff
tively eliminated by conditions~2.22!#. This simple first step
will ~i! give us the same conditions for the stationary pro
gation of the DM soliton as were obtained in, e.g., Re
@16,31# by the variational method, and, more importantly,~ii !
indicate how our analysis is to be extended to the case o
arbitrary number of harmonics.

Ignoring all amplitudesan
(0) other thana0

(0) anda2
(0) and

using Eqs.~2.22! and~2.23!, we obtain from Eqs.~2.21! the
following system:

i ȧ0
~0!1a0

~0!F2
D0

4T0
2

1
ua0

~0!u2

A2
I 0G1a2

~0!F2A2ua0
~0!u2I 221

D0

T0
2 G

1a2
~0!* F2

a0
~0!2

A2
I 2G50, ~2.24a!

i ȧ2
~0!1a0

~0!F D0

8T0
2

2
ua0

~0!u2

8A2
I 2G1a2

~0!F3

4

ua0
~0!u2

A2
I 02

5D0

4T0
2 G

1a2
~0!* F3a0

~0!2

8A2
I 4G50. ~2.24b!
n

-
y

-

-
.

an

Now consider the following thought experiment. Let on
launch a pure Gaussian pulse into a DM fiber, and, mo
over, suppose that its evolution is governed by Eqs.~2.24!.
In general, the second harmonic, which was zero origina
i.e.,a2

(0)(z150)50, will be driven by the second term in Eq
~2.24b!. If a2

(0) grows significantly, then the pulse will no
longer have a simple bell-like shape with one maximum, a
thus stable pulse propagation will not occur. Thus, the n
essary condition for the pulse stationary propagation is
the coefficient multiplyinga0

(0) in Eq. ~2.24b! vanishes. This
yields the following equation:

D0

T0
2

5
ua0

~0!u2

A2
I 2 , ~2.25!

which, in fact, implies two separate conditions for its imag
nary and real parts:

Im I 250, ~2.26a!

D05T0
2

ua0
~0!u2

A2
Re I 2 . ~2.26b!

We now demonstrate that these are exactly the same
ditions that were earlier obtained in Ref.@16# ~see also ref-
erences therein!. Using Eq.~2.20!, conditions~2.26! can be
rewritten in explicit form:

E
0

1 G~z!D~z!dz

„T0
41D2~z!…3/2

50, ~2.27a!

D05
ua0

~0!u2

A2
T0

4E
0

1G~z!@T0
42D2~z!#dz

@T0
41D2~z!#3/2

. ~2.27b!

Next, from Eqs.~2.2! and ~2.6!, one sees thatD(z) is given
by

D~z!5H ~D01D1z!, 0,mod~z,1!,L1 ,

@D01D1L11D2~z2L1!#, L1,mod~z,1!,1.
~2.28!

With Eq. ~2.28!, one performs the integration in Eq.~2.27!
first over the interval 0,z,L1 , using the substitutionz
5L1(s1 1

2 ), and then adds to the result the integral ov
L1,z,1, in which one makes the substitutio

(z2L1)5L2( 1
2 2s). Then, taking into account Eqs.~2.3!

and ~2.4!, we transform conditions~2.27! into the form
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E
21/2

1/2 @s1xD01 1
2 #g~s!ds

@T0
41~s1xD01 1

2 !2#3/2
50, ~2.29a!

D05
ua0

~0!u2

A2
T0

4E
21/2

1/2 @T0
42~s1xD01 1

2 !2#g~s!ds

@T0
41~s1xD01 1

2 !2#3/2
,

~2.29b!

wherex5sgn(D1L1) and

g~s!5L1G@L1~s1 1
2 !#1L2G@L11L2~ 1

2 2s!#.
~2.30!

Upon noting the correspondence of notations:

~T0
2! this paper5

1
2 ~t0

2!Ref. @16# ,

one sees that Eqs.~2.29! are the same as Eqs.~10! in @16#,
which were obtained there by the variational method. Fo
given minimum widthT0 , the first of these conditions dete
minesD0 and hence the initial chirp; then the second con
tion determines the relation between the average disper
D0 and the amplitudea0

(0) . In particular, these condition
predicted the possibility of stationary propagation of a D
soliton at normal average dispersion~i.e., at D0,0) when
T0<(T0)cr'0.39. The validity of conditions~2.29! was con-
firmed in Ref.@16# by extensive numerical simulations.

B. Remarks

First, the transformation of variables~2.5! is the well-
known ‘‘lens transformation’’@41# that has also been use
earlier in other analytical studies of the strong DM regim
@34,33#. It exists since Eq.~2.1! with e50 ~i.e., the linear
parabolic equation! has a certain symmetry group~denoted
asG6 in @42#!.

Second, the fact that Eq.~2.11! yields the general solution
to Eq. ~2.1! with e50 has recently been pointed out, in th
context of linear optical pulse propagation, in Ref.@43#. Our
Eq. ~2.11! generalizes the corresponding equation in R
@43# in that it is written for the variable dispersionD(z) and
a nonzero frequencyv0 of the pulse. It should also be note
that adifferentHermite-Gaussian expansion for a pulse in
fiber laser has been used recently in Ref.@44#.

Third, the solution~2.11! separates the variablesz andj.
Note that most classical partial differential equations
solved using a proper separation of variables.

Fourth, the first term of the solution~2.11! is just the
familiar Gaussian pulse, which we rewrite here in the ori
nal variablesz andt:

u0
~0!5

a0

A11 iD/T0
2

expF2
t2

2T0
2~11D2/T0

4!

1 i
t2D

2T0
4~11D2/T0

4!
G , ~2.31!

where we have putv05tc50 for simplicity. Thus the pa-

rametersT0 and D0 /AT0
41D0

2 have the meanings of th
minimum pulsewidth and the initial chirp, respectivel
a

-
on

f.

e

-

Since Eq.~2.28! guarantees thatD(z) periodically oscillates
about some constant value, then the width, the amplitu
and the chirp of the pulse also oscillate about their respec
constant values, rather than grow or decrease on averag

Fifth, we discuss the limitT0→` of the DM soliton, with
its amplitude being fixed at a finite value. It is easy to s
from Eq. ~2.1! that the size of the variable dispersion ter
decreases with the increase ofT0 , whereas the magnitudes o
both the average dispersion and nonlinear terms are inde
dent ofT0 @cf. Eq. ~2.26b!#. Thus, these two terms are dom
nant in the limitT0→`, and therefore this limit correspond
to the NLS equation with the uniform dispersionD0 . There-
fore, we will always verify that our analysis gives corre
results in the limitT0→`.

Sixth and last, it is fully expected that conditions~2.26!,
obtained here by considering the evolutions of the zeroth
the second Hermite-Gaussian harmonics, should also fo
from the variational method. Indeed, the ‘‘variations
]u(0)/]T0 and]u(0)/]D0 , which are in fact used when find
ing the stationary solution of the variational equations in R
@16#, both contain precisely those two harmonics, provid
that the trial function was taken as the pure Gaussian p
~2.31!. This can be easily seen from the coefficients mu
plying the termsan

(0) andan12
(0) in Eq. ~2.21!.

III. SHAPE OF THE STATIONARY DM SOLITON

Let us now extend the previous analysis by taking in
account the next even harmonic, i.e., that withn54. As be-
fore, our main goal is to study the stationary DM soliton, a
therefore we setḊ05Ṫ050 everywhere in this section. W
also set

a0
~0!5A@11â0~z1!#eiLz1, a2,4

~0!5Aâ2,4~z1!eiLz1,
~3.1!

where

L5L01
A2

A2
L1 , ~3.2a!

L05
A2I 0

A2
2

D0

4T0
2

, uL1u!uL0u. ~3.2b!

L0 is the leading-order ‘‘frequency’’ of the slow oscillation
of all harmonics@see the second term in Eq.~2.24a!#, and the
small correctionL1 is to be determined later. The conditio
~2.25! for the stationary propagation now needs to be tak
in a modified form:

D0

T0
2

5
ua0

~0!u2

A2
~ I 21d!, ~3.3!

where the small correctiond is also to be found later. Fi-
nally, we assume that the correctionAâ0 to the amplitude of
the zeroth harmonic, as well as the amplitudesAâ2,4 of the
higher harmonics, are small and of the same order of m
nitude asL1 andd:

uAâ0u;uAâ2u;uAâ4u;udu;uL1u!A. ~3.4!
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All further calculations can be carried out for the gene
case when both losses and periodic amplification are pre
in the fiber. However, below we restrict our attention to t
lossless case. ThenG(s)[1 in Eq.~2.1!, and using the same
variable substitution as when obtaining Eqs.~2.29!, all inte-
grals I n can be found explicitly as elementary functions
T0 . Moreover, the condition

D052 1
2 sgn~D1L1!, ~3.5!

which follows from Eq.~2.29a! for G(s)[1, guarantees tha
all these integrals are real valued:

Im I n50 for all even n. ~3.6!

Substituting Eqs.~3.1!–~3.6! into the system~2.21!, ne-
l
nt
glecting terms quadratic ind ~e.g.,â0d, etc.!, and consider-
ing only the harmonics withn50,2,4, we obtain for the vec
tor

QW 45@ â0R ,â0I ,â2R ,â2I ,â4R ,â4I #
T ~3.7!

the following linear system:

QẆ 45
A2

A2
@M4QW 42SW 4#. ~3.8!

Here â0R5Reâ0 , â0I5Im â0 , etc., the matrixM4 is given
by
armonic
M451
0 0 0 0 0 23I 4

2I 0 0 22I 2 0 9I 4 0

0 0 0
1

4
I 01I 21

3

8
I 4 0 2

9

4
I 22

15

8
I 6

2
1

4
I 2 0 2

1

4
I 02I 21

3

8
I 4 0

9

4
I 22

15

8
I 6 0

0 0 0 2
3

64
I 22

5

128
I 6 0

29

64
I 012I 21

35

128
I 8

0 0
3

64
I 22

5

128
I 6 0 2

29

64
I 022I 21

35

128
I 8 0

2 , ~3.9!

and the vectorSW 4 is given by

SW 45F2L1 ,0,2
d

8
,0,2

I 4

128
,0GT

. ~3.10!

The stationary solution is found by setting the left-hand side of Eq.~3.8! to zero, which immediately yields

â0I5â2I5â4I50. ~3.11!

Then â0R , â2R , andâ4R satisfy the following reduced linear system:

S 2I 0 22I 2 9I 4

2
1

4
I 2 2

1

4
I 02I 21

3

8
I 4

9

4
I 22

15

8
I 6

0
3

64
I 22

5

128
I 6 2

29

64
I 022I 21

35

128
I 8

D S â0R

â2R

â4R

D 5S 2L1

2
1

8
d

2
1

128
I 4

D . ~3.12!

We now use the freedom in choosingL1 andd in order to set

â0R50, â2R50. ~3.13!

The meaning of the first of these conditions is obvious: We simply require that the stationary amplitude of the zeroth h
identically equalA. The second condition in Eq.~3.13! amounts to the requirement that the widthW(z) of the stationary DM
soliton, defined as

W2~z!5S E
2`

`

t2uuu2dt D Y S E
2`

`

uuu2dt D , ~3.14!

be ~approximately! equal toT0A11D2/T0
4, i.e., the width of its zeroth harmonic. Indeed, from Eq.~2.11! one has
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uuu2'uu~0!u2'FUa0
~0!c0

~0!U21 (
n>2, n even

~a0
~0!an

~0!* c0
~0!cn

~0!* 1c.c.!Hn~j!Ge2j2
, ~3.15!
e
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where we have used the strong inequality~2.16! and thus
neglected terms quadratic inan

(0) for n>2. Then only the
first term and the term withn52 in the sum on the right-
hand side of Eq.~3.15! contribute to the numerator in th
definition ~3.14!, the other terms being orthogonal tot2 due
to the orthogonality of the Hermite polynomials@cf. Eq.
~2.19c!#. Thus, whenâ2R50, then within the approximation
considered, the width~3.14! of the DM soliton equals the
width of its leading-order, Gaussian harmonic.

From Eqs.~3.13! and ~3.12!, one easily finds that

â4R5
I 4

128F29

64
I 012I 22

35

128
I 4G21

, ~3.16!

and

L1529I 4â4R , ~3.17a!

d5~15I 6218I 2!â4R . ~3.17b!

Note thatâ4R is the function of the only parameterT0 . This
function is plotted in Fig. 1 with a solid line.

Now, we have to answer the following important que
tion: Will taking into account higher harmonics~with n
>6) significantly modify the results just obtained? This,
fact, involves two subquestions. First, is the express
~3.16! for â4R significantly modified when harmonics wit
n>6 are taken into consideration? Second, does the co
bution of those higher harmonics to the pulse shape exc
or become comparable with, the contribution of the harmo
with n54? A rigorous answer to those questions requi
estimation of the sizes ofan

(0) for all n>6 and for allT0 .
This we have been unable to do~see, however,@45#!, since
the complexity of the system~2.21!, truncated at a certainn,
very rapidly increases with the increase ofn. Instead, we

FIG. 1. Solid line: Magnitude of the fourth harmonicâ4 , as
given by Eq.~3.16!. Dashed line: Same quantity calculated wh
the harmonic withn56 is taken into account.
-

n

ri-
d,

ic
s

restricted our attention to just one next harmonic, i.e., t
with n56, and repeated the preceding analysis. We fou
that wheneverT0*(T0)cr'0.39, the answers to both que
tions above are negative. To be more specific, in Fig. 1
also plotted~dashed line! the quantityâ4R calculated when
the harmonic withn56 is taken into account. The two
curves in Fig. 1 are seen to be sufficiently close to each o
whenT0*0.4. Also, we found that forT0*0.4, the ratio of
the amplitudesua6

(0)u/ua4
(0)u,0.01 ~except near the poin

wherea4
(0) vanishes!, and thus the ratio of the magnitudes

the 6th and 4th harmonics in the stationary soliton is l
than 10%:

ua6
~0!H6~j!e2j2/2u/ua4

~0!H4~j!e2j2/2u,0.1 foruju,3.5.

Although harmonics withn>8 also modify Eq.~3.16! and
contribute to the shape of the DM soliton, their contributio
are expected to be less than that of the harmonic withn56
@43#. Thus, we conclude that whenT0*(T0)cr'0.39, the
shape of the stationary DM soliton in the intervaluju,3.5
can be rather accurately approximated by just the two h
monics withn50 andn54.

In Fig. 2, we plotted the stationary profiles of the D
soliton at the point where its chirp vanishes@i.e., where
D(z)50]. These profiles were calculated using the two-te
truncation of the general solution~2.11! with ua0

(0)u[A51:

u~0!'@11â4RH4~j!#e2j2/2 ~3.18!

for three different values ofT0 . For a relatively large
T052.5, Eq.~3.16! yields â4R50.0035. This is very close to
the value of the coefficients4'0.0037 in the Hermite-
Gaussian expansion of the sech-shaped NLS soliton:

FIG. 2. Shapes of the stationary DM soliton at the point wh

D(z)50. Thin solid line:T052.5, â450.0035. Thick solid line:

T050.74, â450. Dashed line:T050.39, â4520.0035.
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A0sech~j/w0!5 (
n50

`

snHn~j!e2j2/2, ~3.19!

where the constantsA0'1.057 andw05A2/p'0.798 are
chosen so as to haves051 ands250. ~One can also show
that in that case,s650.) Thus, forT0@1 and for not too
large uju, the truncated expansion~3.18! yields an approxi-
mately sech-like profile~thin solid line in Fig. 2!. This is
consistent with Remark 5 in Sec. II B about the limitT0
→`. Next, as the minimum widthT0 decreases, the size o
the fourth harmonic initially decreases, and the DM solit
becomes closer to a Gaussian. AtT0'0.74, the fourth har-
monic vanishes, and sufficiently close to its center the pu
is very close to a Gaussian~thick solid line in Fig. 2!. The
contribution of the higher harmonics is expected to beco
more pronounced at the pulse ‘‘tails’’ far enough from
center. Finally, forT0,0.74, â4R becomes negative, an
the pulse develops ‘‘wings.’’ Also note that since@39#

E
2`

`

e2 ivjHn~j!e2j2/2dj5
~ i !n

A2p
Hn~v!e2v2/2,

then Eq.~3.18! also yields an approximate spectrum of t
DM soliton. This explains property~ii ! stated in Sec. I.
Namely, Eqs.~3.16! and ~3.18! describe a smooth transitio
of the pulse shape from a hyperbolic secant to the Gaus
and then further to a shape with a higher time–bandwi
product. The latter part of the transition is manifested by
corresponding spectrum being broader at the top asT0 de-
creases. Note that property~iii ! is already explained by ex
pansion~2.11!, from which it is clear that the pulse shap
will change depending on the value ofD(z) inside the map.

We also analyzed small oscillations about the station
solution of Eq.~3.8!. The spectrum of these oscillations co
tains two zero eigenfrequencies and two pairs (6v) of non-
zero eigenfrequencies. The latter are real for allT0
>(T0)cr . In Fig. 3, we plotted the two different positiv
eigenfrequencies of the system~3.8!. When one takes into
account the next even harmonic (n56), then one more
branch of oscillations, with a higher frequency, arises, wh
the frequencies of the two ‘‘old’’ branches may change by
more than 15% each. The two zero eigenfrequencies pe

FIG. 3. Nonzero eigenfrequencies of small oscillations near
stationary solution of Eq.~3.8!.
e

e
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as one can show, whenany number of harmonics is take
into account. This fact will play an important part in Sec. IV

Since a stationary DM soliton is an even function ofj,
then the stationary values of all its odd harmonics are ze
Following the lines above, we can arrive at a linear system
the form ~3.8! for the vector QW 2k21

5@ â1R ,â1I , . . . ,â(2k21)R ,â(2k21)I #
T, which describes smal

oscillations involving the firstk odd harmonics. This system
must always have two zero eigenmodes~i.e. the modes with
zero eigenfrequencies!. One of them,]u(0)/]t, corresponds
to a translation alongt, and the other,]u(0)/]v0 , corre-
sponds to a shift of the soliton’s frequency. Letān

(0) be the
coefficients in the expansion~2.11! of the stationary solution
u(0). Then the above two zero eigenmodes can be show
be as follows:

]u~0!

]t
5 (

n51, n odd

` F2
1

2
ān21

~0! 1~n11!ān11
~0! G

3cn
~0!~z!Hn~j!eiC, ~3.20a!

]u~0!

]v0
5 iT0 (

n51, n odd

` F1

2
ān21

~0! 1~n11!ān11
~0! G

3cn
~0!~z!Hn~j!eiC, ~3.20b!

and the phaseC is the same as in the expansion~2.11!.
The system

QẆ 15S 0 I 2

0 0 DQW 1 ~3.21!

for just the first odd harmonic clearly does have those t
zero eigenmodes. However, once we include higher harm
ics ~e.g., considerQW 55@ â1R , . . . ,â5I #

T), then the resulting
truncated system no longer has modes with exactly z
eigenfrequencies. Instead, forQW 3 andQW 5 we verified, using
MAPLE, that there are two eigenfrequencies whose magnit
is on the order of 0.1 and which may be complex for so
T0 . The other eigenfrequencies are of order one and alw
real for all T0>(T0)cr . The nonvanishing of the two eigen
frequencies in question can be attributed to our truncation
an infinite, coupled system forQW into a finite-dimensional
system, and thus is a deficiency of our approach rather t
an indication of any actual instability of the DM soliton. I
fact, its long-term stability has been verified in many nume
cal simulations of Eq.~2.1!.

IV. PERTURBATION THEORY FOR THE DM SOLITON

A. Results

As noted in Sec. I, the main advantage of the DM tec
nique is that it significantly reduces the effect of perturb
tions on a soliton. Below we derive explicit expressions th
allow one to calculate this effect for az periodic~with period
Lmap[1), but otherwise arbitrary perturbationR(t,z). Con-
sider a perturbed equation~2.1!

iuz1
1

2
D~z!utt1eF1

2
D0utt1G~z!uuuu2G5emR.

~4.1!

e
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wherem!1 is a small parameter characterizing the size
the perturbation. The magnitudes ofe and m are not sup-
posed to be related, although for the consistency of our
proach, we should require thatm@e, in order to neglect
terms of ordere2. Following the approach of Sec. II, on
obtains modified equations for the amplitudesan

(0) :

i ȧn
~0!1$as before%5mRn , ~4.2!

where

Rn~z1!5E
0

1

dz
@cn

~0!~z!#21

2nn!Ap
E

2`

`

djR~j,z!Hn~j!e2j2/22 iC,

~4.3!

and the phaseC is the same as in the expansion~2.11! @see
also Eqs.~3.20!#. The solution to system~4.2! is sought in
the form

an
~0!5ān

~0!1mãn
~0! , ~4.4!

where ān
(0)5ān

(0)(T0) are the expansion coefficients of th
stationary unperturbed solutionu(0). As before, conditions
~2.22!, which now need to hold only in the zeroth order inm,
guarantee that the equations for even- and odd-numb
ãn

(0) are decoupled. However, we now allow the parame

D0 , T0 , v0 , $ṫc2v0D02v̇0@ 1
2 sgn(D1L1)1D0#%, and w0

5f2v0
2D0z/2 @cf. the coefficients ofan61

(0) andan
(0) in Eq.
at
ha
e

o

f

p-

ed
rs

~2.21!# to vary at a rate proportional tom. Consequently, the
amplitudesān

(0)(T0) can also vary at the same rate. Note th
the variations ofD0 and T0 are related by Eq.~2.29a! and
thus are not independent. In order to simplify the subsequ
analysis and arrive at explicit expressions, below we w
only consider the case of a lossless fiber, whereby one
D052 1

2 sgn(D1L1) for all T0 , and thusḊ05O(m2).
Since our calculations in Sec. III have been carried out

the harmonics withn<4, below we restrict the analysis onl
to those harmonics. For the vectors

Q̃W 5e2 iLz1@ ã0R
~0! ,ã0I

~0! , . . . #T

and

Q̄W 5e2 iLz1@ ā0R
~0! ,ā0I

~0! , . . . #T,

whereL is defined by Eqs.~3.2!, one obtains the following
linear system:

Q̃Ẇ 5MQ̃W 1SW2Q̄Ẇ 1mRW . ~4.5!

First, we specify the form of various terms in Eq.~4.5! for
even harmonics. In that case, matrixM is given by Eq.~3.9!.
The vectorSW of the slow derivatives and the perturbatio
vectorRW are given by the following formulas:
SW5F2
Ṫ0

2T0
ā0

~0! ,2ẇ0ā0
~0! ,2

Ṫ0

4T0
~ ā0

~0!248ā4
~0!!,0,

Ṫ0

2T0
~2ā4

~0!160ā6
~0!!,2ẇ0ā4

~0!GT

, ~4.6!

RW 5@R0I ,2R0R ,R2I ,2R2R ,R4I ,2R4R#T, ~4.7!
ua-
whereRnR5ReRn ,RnI5Im Rn . Note thatānI
(0)50 for all n

and, in addition,ānR
(0)50 for all oddn. The stationary ampli-

tude uā0
(0)u of the zeroth harmonic was denoted asA in Sec.

III.
Since Eq.~4.5! is linear, it can be analyzed in a gre

number of ways. Here, we chose to follow the method t
emphasizes both similarities to and differences from the p
turbation theory for the NLS~see, e.g.,@46# and remark 1
below!. Specifically, the solution for Eq.~4.5! is sought in
the form

Q̃W 5k0qW 01S k0
AqW 0

A1E
0

z1
k0

A~s!dsqW 0D 1 (
n51

4

knqW nelnz1.

~4.8!

HereqW n andln are the eigenvectors and the eigenvalues
M4 :

M4qW n5lnqW n , n50, . . . ,4 ~4.9!

with l050, andqW 0
A is the associate eigenvector satisfying
t
r-

f

M4qW 0
A5qW 0 . ~4.10!

The expansion coefficientskn(n50, . . . ,4) andk0
A are func-

tions of z1 . We will only require the forms ofqW 0 and qW 0
A ,

which can be easily found:

qW 05@0,1,0,0,0,0#T, qW 0
A5@ x̂0R ,0,x̂2R ,0,x̂4R ,0#T,

~4.11!

wherex̂0R ,x̂2R ,x̂4R satisfy the modified system

M4RS x̂0R

x̂2R

x̂4R

D 5S 1

0

0
D , ~4.12!

and the matrixM4R is that on the rhs of Eq.~3.12!. The
explicit form of the entries ofqW 0

A , that involves the integrals
I n(T0), is rather cumbersome. However, from the last eq
tion of the system~4.12! one can conclude that
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x̂4R' 1
20 x̂2R , ~4.13!

which can indeed be confirmed by plotting these two qu
tities as functions ofT0 for T0>(T0)cr'0.39.

Next, one considers the solutions of the eigenvalue pr
lem

2M4
TpW n5lnpW n , ~4.14!

which is adjoint to the eigenvalue problem~4.9!. Since the
eigenvlaues ofM4 come in pairs as6l, then the eigenval-
ues of Eq.~4.14! are the same as those of Eq.~4.9!. In par-
ticular, l50 is a double eigenvalue of Eq.~4.14!, with the
eigenvectorpW 0 and the associate eigenvectorpW 0

A being given
by

pW 05@1,0,ŷ2R ,0,ŷ4R ,0#T, pW 0
A5@0,ŷ0I ,0,ŷ2I ,0,ŷ4I #

T.
~4.15!

The entries in Eq.~4.15! satisfy the following systems:

S 1

4
I 01I 21

3

8
I 4 2

3

64
I 22

5

128
I 6

2
9

4
I 22

15

8
I 6

29

64
I 012I 21

35

128
I 8

D S ŷ2R

ŷ4R
D 5S 0

3I 4
D ,

~4.16!

M4R
T S ŷ0I

ŷ2I

ŷ4I

D 5S 1

ŷ2R

ŷ4R

D . ~4.17!

From the first line of the system~4.16! one can estimate tha

ŷ2R' 1
20 ŷ4R , ~4.18!

which can be confirmed by plotting these quantities forT0

>0.39 ~see Fig. 4!. Similarly, the quantitiesŷ0I ,ŷ2I ,ŷ4I can
be shown to all have magnitudes of order one in the sa
range ofT0 .

In the standard way, one can establish the following
thogonality relations between the vectorspW andqW :

FIG. 4. Solutions of Eq.~4.16!. Solid line: ŷ2R . Dashed line:

ŷ4R/20.
-

b-

e

-

pW k
TqW n50 if lkÞ2ln , ~4.19!

~pW 0
A!TqW k5pW k

TqW 0
A50 for all lkÞ0. ~4.20!

One can also directly verify that

pW 0
TqW 05~pW 0

A!TqW 0
A50, ~4.21a!

pW 0
TqW 0

A5~pW 0
A!TqW 0' x̂0R , ~4.21b!

where the approximate equality in Eq.~4.21b! is obtained
with the use of Eqs.~4.17!, ~4.13!, and ~4.18!. Moreover,
from Eqs.~4.12! and ~4.13! one finds that

x̂0R'
2 1

4 I 02I 21 3
8 I 4

2 1
2 I 0

222I 0I 21 3
4 I 0I 42 1

2 I 2
2

,

x̂2R'

1
4 I 2

2 1
2 I 0

222I 0I 21 3
4 I 0I 42 1

2 I 2
2

, ~4.22!

where the expression forx̂2R is given in view of its possible
use in future work. By plotting the expression forx̂0R for
T0>0.39, one can show thatx̂0RÞ0 in this range ofT0 .

Finally, we substitute the expansion~4.8! into Eq. ~4.5!
and use the orthogonality relations~4.19!–~4.21! to obtain
the following equations:

~pW 0
A!TqW 0 k̇05~pW 0

A!T~mRW 1SW2Q̄Ẇ !, ~4.23a!

pW 0
TqW 0

Ak̇0
A5pW 0

T~mRW 1SW2Q̄Ẇ !. ~4.23b!

In order for the perturbation vectorQ̃W not to grow secularly
in z1 , one must require thatk̇05 k̇0

A50, which with the use
of Eq. ~4.6! yields

Ṫ0

2T0
F S ā0

~0!12T0

dā0
~0!

dT0
D 1

1

2
~ ā0

~0!248ā4
~0!!ŷ2R

1S ā4
~0!260ā6

~0!12T0

dā4
~0!

dT0
D ŷ4RG

5pW 0
TmRW , ~4.24!

ẇ0~ ā0
~0!ŷ0I1ā4

~0!ŷ4I !5~pW 0
A!TmRW ~4.25!

~recall thatānI
(0)50 for all n). In Eq.~4.24!, the magnitude of

the second term in the square brackets is no more than a
6% of the magnitude of the first one sinceu ŷ2Ru is small~cf.
Fig. 4!. The magnitude of the third term is less than 1%
that of the first term sinceā4

(0) andā6
(0) are small too@cf. Eq.

~3.16! and Fig. 1#. Moreover, since the signs ofā4 in the
second and the third terms are opposite, then the magni
of these termscombineddoes not exceed 5% of the magn
tude of the first term. Thus, with a 5% accuracy, one has
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Ṫ0S ā0
~0!

2T0
1

dā0
~0!

dT0
D'pW 0

TmRW , ~4.26!

and similarly,

ẇ0ā0
~0!ŷ0I'~pW 0

A!TmRW . ~4.27!

Note that if the first two entries of the perturbation vectorRW
have a much larger magnitude than its other entries, t
Eqs.~4.26! and ~4.27! can be simplified even further:

Ṫ0

T0
S ā0

~0!

2
1T0

dā0
~0!

dT0
D'mR0I , ~4.28!

ẇ0ā0
~0!'2mR0R , ~4.29!

where R0I and R0R are defined after Eq.~4.7!. Using Eq.
~2.25!, the coefficient of (Ṫ0 /T0) in Eq. ~4.28! is cast into
the form

S ā0
~0!

2
1T0

dā0
~0!

dT0
D 52

ā0
~0!

2I 2

d~ I 2T0!

dT0
, ~4.30!

which is plotted in Fig. 5 forā0
(0)51. Note that for largeT0 ,

when I 2→1, this function tends to the NLS limit, which
equals21/2.

Now, as we turn to the analysis of Eq.~4.5! for the odd
harmonics, we note the following. First, as mentioned in S
III, the analog of Eq.~3.9! that would take into account th
1st, 3rd, and 5th harmonics doesnot have zero eigenmodes
i.e., such eigenmodes whose eigenvalues are exactly ze
is only Eq. ~3.21! that has such eigenmodes. Second,
preceding analysis for the even harmonics has shown tha
dominant contribution to the perturbation equations~4.26!
and~4.27! comes from the lowest harmonic, i.e.,a0

(0) . Simi-
larly, we can expect that it is the lowest odd harmonic,a1

(0) ,
that should contribute the most to the perturbed evolution
the parametersv0 and tc . Thus, we consider Eq.~4.5!,
where now

FIG. 5. The function in Eq.~4.30!. Note that in this figure, the
smallest value ofT050.45.(T0)cr in order to avoid the singularity
at T05(T0)cr .
n

c.

. It
e
he

f

M5S 0 I 2

0 0 D , ~4.31!

SW5F2
ā0

~0!

2T0
~ ṫc2v0D0!,2

ā0
~0!T0

2
v̇0GT

, ~4.32!

and

RW 5@R1I ,2R1R#T. ~4.33!

Then, similarly to the even-harmonics case, we obtain

ā0
~0!

2T0
~ ṫc2v0D0!5mR1I , ~4.34!

ā0
~0!T0

2
v̇052mR1R . ~4.35!

Finally, as a simple application of our perturbation theo
we consider the effect of fixed-frequency filters on a D
soliton. The equation in question is then

iuz1
1

2
D~z!utt1eF1

2
D0utt1G~z!uuuu2G

5eS igu1 i
b

2
uttD , ~4.36!

whereb is the filter strength andg is the excess gain neede
to compensate for the effective diffusion introduced by t
filtering. Both b and g are assumed to be small:b,g
5O(m). The calculation of theg term in the perturbation
vectorRW is straightforward, and that of theb term is also
carried out easily upon replacingD0 with (D02 ib) in Eq.
~2.21!. The relevant components ofRW are as follows

R05 i Fg2
b

2S 1

2T0
2

1v0
2D G ā0

~0! , ~4.37a!

R15
v0b

T0
ā0

~0! , ~4.37b!

R25 i
b

8T0
2 ~ ā0

~0!148ā4
~0!!, ~4.37c!

R45 i Fg2
b

2S 9

4T0
2

1v0
2D G ā4

~0!1 i
15b

T0
2

ā6
~0! . ~4.37d!

Following the argument presented after Eq.~4.25!, we ob-
serve that the perturbation equations~4.26! can be reason-
ably well approximated by Eq.~4.28!. Thus, one finds

Ṫ0

d~ ā0
~0!2T0!/dT0

~ ā0
~0!2T0!

'2g2bS v0
21

1

2T0
2D , ~4.38a!

v̇0'2
2b

T0
2

v0 . ~4.38b!
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Equations that are equivalent to these were earlier obta
by Matsumoto@14# ~see also@13#! from the conservation
laws for Eq.~4.36!; cf. remark 3 below.

B. Remarks

First, we point out the difference of the above perturb
tion theory from that for the NLS soliton. In the latter cas
the zero eigenmodes of the linearized NLS correspond to
infinitesimal shifts of the four soliton parameters: the amp
tude ~same as the inverse width!, the overall phase, the ve
locity ~same as the frequency!, and the center coordinat
~see, e.g.,@46#!. In the case of the perturbed DM soliton, th
last two shift modes are easily recognized in the express
in Eqs.~3.20!. However, as we mentioned in Sec. III, the
eigenmodes are indeed the zero eigenmodes for the c
sponding truncated system of equationsonly when the trun-
cation is done at the lowest odd harmonic~i.e., at that with
n51). As for the shifts corresponding to the amplitude a
the overall phase, those are not the zero modes of their
responding truncated system for two different reasons. F
that system’s coefficients depend onT0 , and hence
]u0

(0)/]T0 is not a zero mode. Second, the stationary value
the coefficienta4

(0) is found from the equation with a nonzer
rhs @Eq. ~3.12!#, hence]u0

(0)/]w0 is not a zero mode.
Second, the form of the function in Eq.~4.30! and that of

matrix M in Eq. ~4.31! both present additional evidence th
the results obtained in this section can be rigorously justi
only for T0.(T0)cr'0.39, sinceI 2„(T0)cr…50.

Third, the perturbation equations~4.28!, ~4.29!, ~4.34!,
and~4.35! appear to be the same as the analoguous equa
that are obtained using either conservation laws or the va
tional method for Eq.~4.1!, with the form of the unperturbed
solution being taken as the Gaussian@14,13,16#. This con-
firms the validity of the results obtained in Refs.@14,13#. It
also explains the very good agreement, found in@5#, between
the experimentally measured GH jitter of the DM soliton a
its theoretical estimate, which was obtained in Ref.@5# by
simply dividing the corresponding formula for the NLS so
ton by the energy enhancement factor~cf. the discussion in
@16#!. We emphasize that even if one were to use theexact
profile of the DM soliton to obtain the perturbation equatio
from the conservation laws or the variational method, th
equations would still hold only approximately~although with
good accuracy, as explained above!. The reason for that
which involves the orthogonality of the radiation modes
the soliton, was discussed in@16#.

V. CONCLUSIONS

In this work, we have used the expansion~2.11! over the
appropriate set of Hermite-Gaussian functions to represe
pulse propagating in the strong DM regime. We found~Sec.
II ! that with just the first two lowest even harmonics, o
obtains the same conditions for the pulse stationary prop
tion as were earlier obtained by the variational method. T
ing into account the next even harmonic, we found the c
rection @given by Eqs. ~3.3! and ~3.17b!# to the above
conditions of stationary propagation. Note that the amplitu
of the DM soliton can be found from Eqs.~3.18! and~3.16!,
whereas the width, given by Eq.~3.14!, is the same as the
ed
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d
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e

t a

a-
-
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e

width of its zeroth~purely Gaussian! harmonic, i.e., it equals
T0A11D2/T0

4. Moreover, Eqs.~3.18! and~3.16! provide an
accurate approximation for the soliton’s shape not too
from its center (uju,3.5) andwhen the minimum widthT0
of the soliton exceeds a certain threshold value. That thre
old value, (T0)cr'0.39, appears to be the same as~or, at
least, very close to! the threshold where the average disp
sion in the system turns negative in order to support~quasi-
!stationary propagation of a DM soliton. For narrower puls
with T0,(T0)cr , higher harmonics~with n>6) significantly
contribute to the pulse shape.

We emphasize that all the results obtained in this work
explicit functions of the only parameterT0 , provided that the
parameters of the dispersion map are fixed and there is
sumed to be no losses in the fiber.@When the periodically
compensated losses are included into consideration,
above results can still be obtained by evaluating a sm
number of certain definite integrals; cf. Eqs.~2.29! and
~2.20!.# Note that instead of varying the minimum puls
width T0 and keeping the dispersion map parameters fix
one can equivalently vary the dispersion strength, (D1L1
2D2L2), while keeping the pulsewidth fixed. It is this late
convention that was adopted in most studies of the DM s
tems. The stronger dispersion maps in that convention co
spond to shorter pulses~smaller values ofT0) in our nota-
tions. An invariant parameter, which can be proposed
facilitate the comparison of results obtained by different
searchers, is the stretching factor of the DM soliton. T
stretching factor can be defined@16# as the ratio of the maxi-
mum and minimum widths of the pulse:

S5A11
Dmax

2

T0
4

. ~5.1!

For the lossless fiber,Dmax
2 51/4; cf. Eqs.~2.28! and ~2.4!.

Thus, the stretching factor corresponding to the thresh
width (T0)cr equals

Scr'A11
1/4

0.394
'3.43. ~5.2!

Similarly, that factor corresponding to the minimum wid
T050.74 where the pulse is closest to the Gaussian~cf. Fig.
2! is

SGauss'A11
1/4

0.744
'1.35. ~5.3!

Note that this is reasonably close to the valueS&1.5, which
was reported in Ref.@8# for a numerically found DM soliton
with an almost Gaussian spectrum.

We also used our Hermite-Gaussian expansion to de
~Sec. IV! the equations for a perturbed evolution of the D
soliton under a general perturbations. We showed that w
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an accuracy of about 5%, these equations can be also
tained by considering the conservation laws for the co
sponding evolution equation, where the form of the unp
turbed soliton is taken as a chirped Gaussian pulse. T
justifies the results of earlier studies@5,15,13,14#, where the
perturbed evolution of the DM soliton was studied usi
either the conservation laws or the variational method.
was explained in Ref.@16#, without that justification, the va
nd
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lidity of the approach based on the conservation laws or
variational method was far from obvious.
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