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Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers
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We represent a pulse in the strongly dispersion managed fiber as a linear superposition of Hermite-Gaussian
harmonics, with the zeroth harmonic being a chirped Gaussian with periodically varying width. We obtain the
same conditions for the stationary pulse propagation as were obtained earlier by the variational method.
Moreover, we find a simple approximate formula for the pulse shape, which accounts for the numerically
observed transition of that shape from a hyperbolic secant to the Gaussian. Finally, using the same approach,
we systematically derive the equations for the evolution of a pulse under a general perturbation. This system-
atic derivation justifies the validity of similar equations obtained earlier from the conservation laws.
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. INTRODUCTION less than both the nonlinear length, i, and theaverage

dispersion length& ;,cage Moreover, in the strong DM re-

Recent experimentdll-5], numerical[6-10], and ana-  gime, thelocal dispersion lengtth o, is also much less than

lytical [11-16 studies have demonstrated that periodic dishoth L, and Laverage IN the weak DM regime, all these
persion compensation, or dispersion managertekt), can  three lengths are of the same order of magnitude. In other
be used to significantly improve the performance of solitonyords, in the strong DM regime, the local dispersion is the
transmission systems. Moreover, it has been shown in Refjominant factor affecting the pulse evolution, whereas in the
[17] that in 2 DM system, pulses in the soliton format can bgyeak DM regime, the effects of the nonlinearity and disper-

gsgrsmtgegf é\gth;nuctezetiﬂgncgrljrs%tse?nbgoiﬁriﬁier:] r?g:‘#gtalﬂ?]n;sion are comparable in magnitude. Consequently, due to the
. . existence of theonly small parameter, s /L oniin, N
zero (NRZ) and the RZ formats at zero average dispersion y P W.map/ L nonin

Here we have used the term “soliton” when referring to at.he weak DM regime, one can reduce the propagation equa-

ulse in a DM svstem. to indicate that stable propadation O}lon to the leading-order NLS equation, corrections to which
P Y ' propag Ean be systematically computed. Thus, all properties of the

such a pulse occurs via the balance of the nonlinearity an M soliton in th Kk DM : b idered
the small average dispersion in the fiber. To distinguish sofiton In the weai regime can be considered as
stable pulse in a DM system from the conventional, nonlin-KNoWn, atleast in principlg21-23,11,12 However, itis the

ear Schrdinger(NLS) soliton in a fiber with uniform disper- Strong DM regime that yields the stronger suppression of
sion, we will refer to the former as the DM soliton. The both the GH timing jitter and the jitter induced by collisions
difference between the DM soliton and the RZ pulse in a pmbetween solitons in different channels. At the same time, the
system is that the RZ pulse is supposed to propagate at ti@xistence of an additiondérge parameterk nonjin/Liocal, in
zero average dispersion. Thus, the results reported in Refhe strong DM regime, renders the results obtained for the
[17] indicate that the DM technique opens the way to up-weak DM formally invalid. Therefore, many numerical stud-
grade the already installed telecommunication lines for thées have been performed, which discovered that a number of
data transmission in the soliton regime. properties of a soliton in the strong DM regime are in distinct
The two main reasons that are behind the success of thmontrast with properties of the NLS soliton. Here is a list of
DM technique for the soliton transmission are as follows.some of those properties:
First, the periodic concatenation of segments of the fiber (i) The DM soliton is strongly chirped. Moreover, in order
with opposite signs of dispersion allows one to make thdo stably propagate in a fiber, it has to be launched at the
average dispersion very small, which reduces the Gordorbeginning of the dispersion map with a particular value of
Haus(GH) jitter for the soliton[18]. Moreover, the DM soli-  the chirp[24,25,§.
ton has greater energy than its NLS counterpart, which fur- (ii) For sufficiently strong periodic variations of the dis-
ther reduces the GH jittef7,5,16. Second, the high local persion, the shape of the DM soliton can be closer to a
dispersion in each of the segments of the dispersion mafaussian than to the convential hyperbolic se¢asegch™).
reduces the detrimental effect on the soliton by the four-This is manifested by the increase of the pulse time-
wave-mixing fields, which arise in collisions of solitons in bandwidth product from 0.32 for the sech up to about 0.44
different wavelength channe]49,6,10. (It is interesting to  for the Gaussian. For even stronger dispersion variations, the
note that a reason similar to this last one was behind th®M soliton has an even higher value of the time-bandwidth
original introduction of the DM for the NRZ transmission product (=0.6) [26,8].
[20].) (iii) Moreover, the pulse changes its shape within one
Two significantly different regimes, those of weak and period of the dispersion map.
strong DM, have been considered in the literature. In both (iv) The energy of the DM soliton is considerably larger
these regimes, the peridg,,, of the dispersion map is much than the energy of the NLS soliton, with both solitons having
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the same average width and propagating at the same averageThe body of this work is organized as follows. In Sec. Il,
dispersion26)]. we present the expansion of the DM soliton over a complete
(v) The DM soliton can propagate over very long dis- set of Hermite-Gaussian harmonics. Using the equations for
tances even if the average dispersion in the system is zero @ust the first two even harmonics, we recover the conditions
negative(i.e., normal [27,28. for the stationary propagation of the DM soliton, which were
An explanation of those properties has been a subject of @arlier obtained by the variational methjdd,31,32. In Sec.
large number of analytical studies. The first group of thosdll, we refine these conditions by taking into account the next
used the variational method with a Gaussian trial function taven harmonic, and also obtain the correction to the shape of
obtain conditions for the amplitude, width, and initial chirp the DM soliton compared to the Gaussian. In Sec. IV, we
with which a DM soliton can propagate stationarily develop the perturbation theory for the DM soliton. Section
[29,30,16,31,3R These conditions for stationary propaga-V contains the summary of this work. Secs. Il and IV each
tion explained propertie§), (iv), (v) listed above. However, have two subsections, with the first subsection containing the
the variational method with a Gaussian trial function couldmain results and the second subsection containing remarks.
not possibly explain the observed shape of a DM soljitan,  We also note that the main results of Sections Il and Il were
propertied(ii) and(iii )]. The second group of studig33—35  announced in Ref.36].
used an averaging technique based on the Lie transformation

to obtain a leading-order propagation equation of the form Il EXPANSION OF THE DM SOLITON OVER THE

HERMITE —GAUSSIAN HARMONICS
iqz+39rr+q(lal?—CT?) =0, (1.1 A. Results

The propagation equation in the strong DM regime can be
whereq is some average pulse profilé,andT are the evo- written in the following nondimensional forngsee, e.g.,
lution and spatial variables, respectively, and the constant [16]):
depends on the parameters of the dispersion map. By nu-
merically finding a stationary solution of E¢l.1), the au-
thors of Refs[33,34 have been able to explain properties
(), (i), (iv), and(v) above. However, sincgwas an average
field, property(iii) still could not be explained. Also, since Here u(z,7) is proportional to the envelope of the electric
Eq. (1.1) is not integrable, then nexplicit expressions for  field, zand r are the distance along the fiber and the retarded
the stationary DM soliton could have been found within thattime D (z) is the periodicwith period Lmap dispersion co-
approach. _ efficient;

The approach that we present here allows us to explain all
of the propertieqi)—(v). This approach is systematic, thus
allowing one to rigorously account for the shape of the DM D(z)=| D1, 0<modzLmay <Ly, 2.2
soliton. At the same time, it yieldexplicit expressions for Do, Li<modz,Lmap <Lmap
the parameters of the stationary DM soliton, with those ex-
pressions being, in the leading order, the same ones obtaingdch that the average &f(z) over the map period. yp is
earlier by the variational method. The key step in our ap—zero:
proach is an expansion of the DM soliton over a complete set
of certain Hermite-Gaussian functions. We show that the D,L,+D,L,=0. 2.3
DM soliton can be represented as an infinite sum of these
functions(which we will call harmonic$, with the dominant, . . .
zeroth, harmonic being the chirped Gaussian pulse. Takin-glg—he variables in Eq(2.1) are normalized16] so as to have
into account the next nontrivigsee below harmonic pro-
vides a very good approximation to the shape of the station-
ary DM soliton. We emphasize that the form in which we
present our results iexplicit That is, all parameters of the The small parametet in Eq. (2.1) is the ratio of the local
DM soliton are given by explicitand rather simpleexpres-  dispersion length to the nonlinear lengtior a pulse with
sions that depend only on the soliton’s minimum width, pro-unit amplitude and unit width it characterizes the
vided that the parameters of the dispersion map are fixed an@trength” of the DM (see also a discussion [16]). Fi-
there is no losses and periodic amplification in the filger.  nally, eD is the average dispersion coefficient, aBk) is
the case with losses and amplification, those expressions canperiodic function, with period. ,, Which accounts for
be easily evaluated numerically by calculating a small numlosses and periodic amplificatidsee Chap. 7 in37]). For
ber of certain definite integra)s. the idealized lossless fibeB(z)=1.

As we mentioned above, the main advantage of using the To obtain a pulse solution of Eq42.1), we use the stan-
DM soliton instead of the NLS soliton as an information dard approach of any perturbation theory. Namely, we first
carrier is that the DM soliton is less susceptible to perturbaexhibit thegeneralsolution of that equation witle=0, and
tions than its NLS counterpart. Thus, we also present a pethen study how the presence of a small perturbafiom,
turbation theory for the DM soliton acted upon by arbi-  when 0<e<1) will modify that solution. To exhibit the
trary perturbation. An example of a specific perturbation,general solution of Eq.2.1) with e=0, we first perform the
which is produced by frequency filtering, is also consideredfollowing transformation of variables:

1
5 Dol + G(2)ulul?|=0. (2.1

1
iu,+ ED(z)uTTJr €

Lmap=1, [Daly|=[DsLo|=1. (2.9
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. T Tc(z) (2 5)
(27| 26 AT '
where
AzA(z)szD(z')dz'wo, 2.6
0
dr.
Td(zz) = woD(2), @2.7)

andT,, wq, andA, are constants. Next, we substitute into

Eq. (2.1) with e=0 the solution of the following form:

(0) | ea A?
u=cV(2)f(&)exp i ﬁ"‘wofTo 1+F+q§(z)

0 0

(2.9
thus obtaining:
o0 c9DA c®D 5
2Ty 1+— 2T3 1+ —
0 Tg 0 Tg
(2.9
provided that we take
dep _ w
922 (2.10

Here and below we omit arguments of functions when they_ 12

are obvious. The operator férin Eq. (2.9 is easily recog-

nized as the linear Schidinger equation for the quantum
whose solutions are the Hermite-

harmonic oscillator,
Gaussian functions. Hence the general solution of (Bd)
with €=0 is

ul®= ZO ancgo)(z)Hn(g)ex;{ 62 ( 1- E)

T2
AZ
+i(1)0§To 1+F+|¢ y

(2.11)
0
where
_ 2\ n/2
Oz / iA/T2
n . 2
VIFiA/T2 1+ iA/TE
exd —inarctafA/T2
_ d MA/TE)] (2.12

V1+iA/TS

a, are arbitrary constants, ardi,(£¢) are the Hermite poly-
nomials satisfying

H/—2&H! +2nH,=0 (2.13

(here prime denotes differentiatiprSee also Remarks 1-4

about the solutiorf2.11) in Section 11 B below.
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Next, we seek a solution of EQ.1) with 0<e<1 using
the method of multiple scales. We introduce the sequence of
independent evolution variables

Zp=2, 2Z,=¢€z, etc. (2.14a

so that

0= 0yt €0+, (2.14b
and look for the solution in the forn2.11), where now we
set

)+eaM(z9,21, .. )+, (215
In what follows, we will only consider the slow evolutions of
the al?) terms and ignore tha{!) terms on the grounds that
they introduce corrections in the next order in the small pa-
rametere. We also note that those latter terms may be re-
sponsible for the radiation of small dispersive waves by the
DM soliton.

Now we make the following two important assumptions
about the perturbed solutidg.11). First, we use the fact that
the “core” of the DM soliton is represented by the chirped
Gaussiarji.e., the term withn=0 in the expansiori2.11)],
with the higher Hermite-Gaussian harmonics providing cor-
rections to the pulse shape. Thus, we require that the ampli-
tude of the zeroth harmonic be dominant in the expansion

(2.1D:

0
an:ag )(Zl!

lal|>1a'?], n=1,23... (2.16
be shown below, the ratios|a®/a{”| (n
.. ) donot depend on the small parameter[Note:
one can easily show that a similar situation also occurs for a

weakly nonlinear string satisfying the equations

As will

Ug— Ug=€u, u(0)=u(1)=0.]
Even with thestrong inequality (2.16), one can quantita-
tively explain the numerically observed transition of the DM
soliton’s shape from the sech-like to that with a higher time-
bandwidth product, as described in Sec. I. Also, this strong
inequality guarantees that the shape of the DM soliton will
not behave chaotically in at least for a sufficiently smadl.
This statement is an analog of the well-known theorem due
to Izrailev and Chiriko\[38], according to which the motion
of a weakly nonlinear chain of oscillators will never become
chaotic provided that the energy is originally distributed
among only a small number of the lowest harmoriitss is
also known as the Fermi-Pasta-Ulam phenomgnon
Second, we will allow the pulse parametdig, Ag, wg,
7., and ¢ to be functions of the slow variablg :

AOZ AO(Zl)v

¢=d(20,21),

This is not really necessary since the set of functions

{Hn(g)efgz’z}ﬁ;o, over which we expand the solution, is
complete in the space of square-integrable functions. How-
ever, we will still use the superfluous degrees of freedom

To=To(z1), o= wo(Z1),

(2.17

7= 7c(20,21),
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allowed by Eq.(2.17 because this significantly simplifies the set of the Hermite-Gaussian functions is complete, then
the following analysis and, in addition, will be required in the coefficient at each term must vanish individually and in
Sec. IV where we develop the perturbation theory for theall orders ine. Obviously, all coefficients of ordes® iden-
DM soliton. tically vanish since the expansid@.11) is the zeroth order
We now substitute the expansi@a1]) into Eq.(2.1) and  solution of Eq.(2.1). Then in the order’, the coefficient
then collect the coefficients at each teH‘g(g)e‘fz’z. Since  multiplying thenth term yields
e

} +al”,

2T To

id,,a0 +iay +af,

) iA i
—wolgl 1—— | — —(7:.— wyD
wolo TS TO(Tc woDy)

(n+2)(n+1)< ~I—a§821[(n+1)

. iA i
_onO 1+_2 +_(Tc_woD0)
Ts To

-(n+ %) . |T0 . (.l)oDO )
X Ag—Dg)+—+ - -
2 (Ag—Dy) 2T, wo| Te™ ¢

(0) !
+an_l E

'1<DO—A0 iTO) sinf w(n+1)/2]e"%a|al?|2G(zo)
x| — +—
4\ 212 To 2%02\[2(nj2)1\1+ A2/TS

1M V2(m+n-1)N G
S (-1 (m+n—1)11G(z)

m=1, 2"\2n1\1+ AT

(m+n) iseven

{aéo)Zagg))* ei(m+n)0+ 2| a60)|2a§1?)ei(n—m)0} =0. (2.18)

Here the overdot stands fofrzl, 0=arcta|ﬁA(zo)/T§], and o oy

(2k—1)11=1X3X5x - - (2k—1). Note that the term with J,wden(g)Hm(f)e

sin(n+1)/2, which comes form the nonlinear term in Eq.

(2.2), is present only for even and vanishes for odd. In B \/; (m—n)2 )

the derivation of the next tern¥{- - -}, we used the strong =V3(=D (m+n—=1!,  (m+n) iseven.
inequality (2.16 and thus neglected terms likd”a{®? and

al9% We also used, in addition to E€2.13, the following (2.199
relations satisfied by the Hermite polynomidlsee, e.g.,

[39): o .
The equation foiia, ™’ follows from Eq.(2.18 after we im-
H(&)=2nH,_1(&), (2.193 pose the _standard _requwemept tla#_ not grow I_mearly
with z,. SinceA(z) is a periodic function with periodl 4,
=1 and, moreover, since we assume that the amplification
Hn+1(§)—28H,(§)+2nH, 1(§)=0, (2.19h period L, is an integer factor ot 5, then that require-
ment amounts to averaging Eq8.18 over one map period.
o Thus, taking into account that & are only functions of
_52: n ’ n
f_xde”(g)Hm(g)e 2 n!\/;5nm, (2.199 the slow variablez,, and denoting
1 Gz 1 dzG(z) [1+iA/TE\ ™
= [faz—22 eme(ﬁsf &2 4/ ,g (2.20
0o 1t AZT o J1+AZTA 1—-iA/T2
we obtain
g Do—Aq Ty : i :
ial”+al,| (n+2)(n+ 1)( T, +al?,| (n+1) —wOTO—T—O(TC—wODO—wO[%sgr(DlLl)—i-Ao)] +al?
0
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(n+3) iTo . 1/ . i .
> ( 0_D0)+f+w0 Tc—zwoDo —¢|+al?, 15 w0T0+_IT(7'C—woDO—wO[%sgr(Dll_l)-q-Ao)]
0 0 0
+ a0 1 Do—Ao+i'i'_o sin m(n+1)/2]ay’|al”|? . (= 1)M=2(m4n— 1)1
n-2| 4 ZTS To 23n/2\/_(n/2)! n = 2n\/§n!
(m+n) iseven
X {al%a* 1o+ 2|28 a1y} =0. (2.29

From Egs.(2.21), we immediately observe that the condi- Now consider the following thought experiment. Let one
tions for decoupling harmonics with evenfrom those with  launch a pure Gaussian pulse into a DM fiber, and, more-
oddn are over, suppose that its evolution is governed by Eg4).

In general, the second harmonic, which was zero originally,

=0, 7.=wyDo. (2.22 i.e.,a(z;=0)=0, will be driven by the second term in Eq.

(2.24h. If al¥ grows significantly, then the pulse will no
Thus, if initially no harmonics with odah are excited and |onger have a simple bell-like shape with one maximum, and
conditions(2.22 hold, then such harmonics will never ap- thus stable pulse propagation will not occur. Thus, the nec-
pear in the evolution. Note that the second of E@22  essary condition for the pulse stationary propagation is that
yields the same relation between tieeragevelocity of the  the coefficient multiplyingg(®’ in Eq. (2.24b vanishes. This

DM soliton [cf. Eq.(2.7)], its frequencywo, and the average yje|ds the following equation:
dispersionD that also holds in the case of uniform disper-

sion. This condition was earlier found in, e.g., Ref0] by D, |a?
. 0 0
different means. —=—=l2 (2.29
Now, if we seek astationarypulse solution of Eq(2.1), To V2
we must set

which, in fact, implies two separate conditions for its imagi-
nary and real parts:

Ag=T,=0. (2.23

L " Iml,=0, (2.26a
Otherwise, if either of these conditions does not hold, then
the pulse’s width will increase without bound asincreases a0|?
[cf. Eq.(2.9)]. Under condition$2.22) and(2.23, Eq.(2.2) Do=T2——— Re I,. (2.260
is simplified considerably, although it still represents an in- J2
finite system of coupled equations. We begin analyzing it by
restricting our attention to the first two harmonios=0 and We now demonstrate that these are exactly the same con-

n=2 [recall that all odd-numbered harmonics can be effecditions that were earlier obtained in R¢L6] (see also ref-
tively eliminated by condition§2.22)]. This simple first step erences therejn Using Eq.(2.20, conditions(2.26) can be
will (i) give us the same conditions for the stationary propalrewritten in explicit form:

gation of the DM soliton as were obtained in, e.g., Refs.

(16,31 by the variational method, and, more importanli), 1 G(z)A(2)dz
o L ———F— =0, (2.27a9
indicate how our analysis is to be extended to the case of an 0 (T4+A2(2))3?
arbitrary number of harmonics. 0
i i (0) (0) (0)
USiIr?noErmg all amplitudesa;,’ other Fhanao andaj”’ and a2 1G(z)[T3—A2(z)]dz
g Eqs(2.22 and(2.23), we obtain from Eqs(2.21) the Dy= (2.27H
following system: V2 o [To+A%(2)]3?
-0, 0 D, +|a§,°)| . \/_| (0)| - + Dext, from Egs.(2.2) and(2.6), one sees thak(z) is given
ia ay| ——+—— al 2|a]
0 0 4T8 2 0 2 -2 T y
ag°>2 A(2)= (Ag+D;2), 0<modz1)<Lq,
+aY*| — —1,|=0, (2.24a [Ag+DiL;+Dy(z-Ly)], Li<modz1)<1.
V2 (228
D, |a¥)2 3 |a<°)| 5D With Eq. (2.28, one performs the integration in ER.27)
ial®+a —2_0 o2 —— first over the interval 6cz<L,, using the substitutiorz
8T2 82 4 2 4T2 =L,(s+1%), and then adds to the result the integral over
02 L,<z<1, in which one makes the substitution
+ a0 °_1,l=0 (2.24b (z—L;)=L,(3—s). Then, taking into account Eq$2.3
8\/5 and (2.4), we transform condition§2.27) into the form
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Since Eq.(2.28 guarantees thak(z) periodically oscillates

1
fllz [s*xAot z]g(s)ds =0, (2.293 about some constant value, then the width, the amplitude,
~1 Tg+ (s+ xAg+ 3)2]%2 and the chirp of the pulse also oscillate about their respective
constant values, rather than grow or decrease on average.
|al?)|2 WL [Té—(s+xAo+ 2)?]g(s)ds _ Fifth, we discqss the IimWo—{oc. of the DM spliton, with
Do= Tof 7 T its amplitude being fixed at a finite value. It is easy to see
V2 ~12 [To+(s+xAp+ 3)] from Eq. (2.1) that the size of the variable dispersion term

(2.295  decreases with the increaseTef, whereas the magnitudes of
both the average dispersion and nonlinear terms are indepen-
dent of T [cf. Eq.(2.26D]. Thus, these two terms are domi-
nant in the limitTy— o, and therefore this limit corresponds
to the NLS equation with the uniform dispersibr,. There-

(2.30 fore, we will always verify that our analysis gives correct
results in the limitT g— oo.
Sixth and last, it is fully expected that conditiof26),
obtained here by considering the evolutions of the zeroth and
the second Hermite-Gaussian harmonics, should also follow

one sees that Eq€2.29 are the same as Eq0) in [16], fror(l)w the variati(c)anal meth'od. InQeed, the “variatiqns”
which were obtained there by the variational method. For 519“( ar a_ndau( )/‘MQ’ which are in fact used when find-
given minimum widthT,, the first of these conditions deter- N9 the stationary solutlt_)n of the variational equations in _Ref.
minesA, and hence the initial chirp; then the second condi[16]: both contain precisely those two harmonics, provided
tion determines the relation between the average dispersidh@t the trial function was taken as the pure Gaussian pulse
D, and the amplitudeago). In particular, these conditions 2._3]). This can l:()oe) eaS|Iy(0§e(_en from the coefficients multi-
predicted the possibility of stationary propagation of a DMPIYing the termsay™ anday’’, in Eq. (2.21).

soliton at normal average dispersi¢ire., atDy<0) when

To=<(To)&~0.39. The validity of condition§2.29 was con- lll. SHAPE OF THE STATIONARY DM SOLITON

firmed in Ref.[16] by extensive numerical simulations.

wherey=sgn@;L,) and

g(s)=L;G[Ly(s+3)]+L,G[Li+Ly(3—5)].

Upon noting the correspondence of notations:

2 2
(TQ)this papef— %( 70)Ref. [16]

Let us now extend the previous analysis by taking into
account the next even harmonic, i.e., that with4. As be-
B. Remarks fore, our main goal is to study the stationary DM soliton, and

First, the transformation of variable®.5 is the well- therefore we sef\;=Ty=0 everywhere in this section. We
known “lens transformation’[41] that has also been used also set
earlier in other analytical studies of the strong DM regime ) . R _
[34,33. It exists since Eq(2.1) with e=0 (i.e., the linear a=Al[1+a9(z;)]e"0%,  af)=Aa, /z;)e,
parabolic equationhas a certain symmetry groudenoted (3.1
asGg in [42]).

Second, the fact that E(R.11) yields the general solution
to Eq.(2.1) with e=0 has recently been pointed out, in the A2
context of linear optical pulse propagation, in Ref3]. Our A=A+ —Aq, (3.23
Eqg. (2.11) generalizes the corresponding equation in Ref. V2
[43] in that it is written for the variable dispersidn(z) and
a nonzero frequency, of the pulse. It should also be noted A%, D,
that adifferent Hermite-Gaussian expansion for a pulse in a o:ﬁ— =y |A1[<[Aql. (3.2b
fiber laser has been used recently in Ré#]. 0

Third, the solution(2.11) separates the variableand{. A s the leading-order “frequency” of the slow oscillations
Note that most classical partial differential equations argy g harmonicg see the second term in E@.243], and the
solved using a proper separation of variables. small correctionA ; is to be determined later. The condition

Fourth, the first term of the solutiof2.11) is just the (5 55 for the stationary propagation now needs to be taken
familiar Gaussian pulse, which we rewrite here in the origi-i, 5 modified form:

nal variablesz and 7:

where

2 Do ag"?
o___ % 4 T 2.5 (I2+ ), 3.3
: 2 2 2114 0
VI+iA/TS 2T5(1+A%Ty)

where the small correctiod is also to be found later. Fi-
, (2.30) nally, we assume that the correctié@, to the amplitude of

the zeroth harmonic, as well as the amplitua@é&szy4 of the
o higher harmonics, are small and of the same order of mag-
where we have pub,=7.=0 for simplicity. Thus the pa- \iiude asA, and &:

rametersT, and AO/\/TZIOﬂLAO2 have the meanings of the R ) .

minimum pulsewidth and the initial chirp, respectively. |Aag| ~|Aay| ~|Aay|~| 8] ~|Aq|<A. (3.9

_ A
o 2,74
2T4(1+ AT
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All further calculations can be carried out for the generalglecting terms quadratic ié (e.g.,a,5, etc), and consider-

case when both losses and periodic amplification are presefg only the harmonics with=0,2,4, we obtain for the vec-
in the fiber. However, below we restrict our attention to thetqy

lossless case. TheéB(s)=1 in Eq.(2.1), and using the same
variable substitution as when obtaining E¢&.29, all inte-
gralsl,, can be found explicitly as elementary functions of
To. Moreover, the condition

2 A A a A~ AT
Qs=[agr .01 ,22r 82| ;4R 341 ] (3.7

the following linear system:

Ag=—3sgr(D4L ), (3.5
. 2
which follows from Eq.(2.293 for G(s)=1, guarantees that Q.= A—[M464— S.]. (3.9
all these integrals are real valued: V2

Iml,,=0 forall evenn. (3.9 R " . R ] o
Hereagg=Reagy, ag=Imay, etc., the matrixM, is given

Substituting Eqs(3.1)—(3.6) into the system2.21), ne- by

0 0 0 0 =3l
2, O -21, 0 al, 0
1 3 9 15
0 0 0 Z|o+|2+§|4 0 _Z|2_§|6
1 1 3 9 15
M4: _ZIZ 0 _Z|0_|2+§|4 0 4|2_§|6 0 y (39)
0 0 0 3I > I 0 29I 2l |
642 128'° a0 2 g’
0 0 3| > I 0 29| 21 I 0
642 128'° T4 22T 138l
and the vectoé4 is given by
S| a0~ 20— o 31
Zil AN 1_51 1_§81 . ( . @

The stationary solution is found by setting the left-hand side of(B® to zero, which immediately yields
g =ay =ay=0. (3.11

Then éOR, éZR’ andél4R satisfy the following reduced linear system:

2lg =2I, 91, —Aq
1I 1I | +3I 9I 15I aor 15
4 2 4 0 2 8 4 4 2 8 6 ézR _ 8 . (312
0 3I > | 29I 215+ 35I é“R L |
642 128° 640 271288 128 4
We now use the freedom in choosinng and § in order to set
aor=0, a,r=0. (3.13

The meaning of the first of these conditions is obvious: We simply require that the stationary amplitude of the zeroth harmonic
identically equalA. The second condition in E¢3.13) amounts to the requirement that the witltlfz) of the stationary DM

soliton, defined as
wz(z)=(fm 7-2|u|2dr)/ (Jw |u|2dr), (3.14

be (approximately equal toTO\/1+A2/TZO, i.e., the width of its zeroth harmonic. Indeed, from E2.11) one has
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U~ |2~ 2

(0)~(0)
8y 'Co
n=2,n even

where we have used the strong inequaliyl6 and thus
neglected terms quadratic mﬁ’) for n=2. Then only the
first term and the term witm=2 in the sum on the right-

hand side of Eq(3.195 contribute to the numerator in the

definition (3.14), the other terms being orthogonal 46 due
to the orthogonality of the Hermite polynomialsf. Eqg.
(2.190]. Thus, whera,g=0, then within the approximation
considered, the widtli3.14) of the DM soliton equals the
width of its leading-order, Gaussian harmonic.

From Egs.(3.13 and(3.12, one easily finds that

. l,[29 35 |1
a“R:EJ@IOJFZIZ_@l“ : (3.16
and
A;=—91,a,R, (3.173
5=(151g—18l,)a,R. (3.17h

Note thatag is the function of the only paramet@p. This
function is plotted in Fig. 1 with a solid line.

Now, we have to answer the following important ques-

tion: Will taking into account higher harmonicsvith n
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(3.19

restricted our attention to just one next harmonic, i.e., that
with n=6, and repeated the preceding analysis. We found
that wheneveiT = (T,)~0.39, the answers to both ques-

tions above are negative. To be more specific, in Fig. 1 we

also plotted(dashed ling the quantitya,s calculated when
the harmonic withn=6 is taken into account. The two
curves in Fig. 1 are seen to be sufficiently close to each other
whenTy=0.4. Also, we found that folfy=0.4, the ratio of

the amplitudes|al’|/|a{”’|<0.01 (except near the point
wherea(”) vanishey and thus the ratio of the magnitudes of
the 6th and 4th harmonics in the stationary soliton is less
than 10%:

1aPHg(&)e 72/|aQH (£)e €72 <0.1  folg<3.5.

Although harmonics witm=8 also modify Eq.(3.16) and
contribute to the shape of the DM soliton, their contributions
are expected to be less than that of the harmonic witt6

[43]. Thus, we conclude that whehy=(Ty)~0.39, the
shape of the stationary DM soliton in the interyg)<3.5

can be rather accurately approximated by just the two har-
monics withn=0 andn=4.

In Fig. 2, we plotted the stationary profiles of the DM

soliton at the point where its chirp vanishfise., where

=6) significantly modify the results just obtained? This, in A(z) =0]. These profiles were calculated using the two-term
fact, involves two subquestions. First, is the expressionruncation of the general solutid®.11) with |ag°)|EA:1;
(3.16 for au significantly modified when harmonics with
n=6 are taken into consideration? Second, does the contri- (3.18
bution of those higher harmonics to the pulse shape exceed,

or become comparable with, the contribution of the harmonig,, three different values off,. For a relatively large
with n=47? A rigorous answer to those questions requiresl_

UO~[1+a4rHq (&) Je™ €7

estimation of the sizes @) for all n=6 and for all T,,.
This we have been unable to dsee, however45]), since
the complexity of the systerf2.21), truncated at a certaim,
very rapidly increases with the increase nof Instead, we

0.004 1 ag)) / a((()))

0.002 1

-0.004

FIG. 1. Solid line: Magnitude of the fourth harmoniaq, as

0=2.5, Eq.(3.16) yieldsa,z=0.0035. This is very close to
the value of the coefficiens,~0.0037 in the Hermite-
Gaussian expansion of the sech-shaped NLS soliton:

1 ©®

FIG. 2. Shapes of the stationary DM soliton at the point where

given by Eq.(3.16. Dashed line: Same quantity calculated when A(2)=0. Thin solid line:T;=2.5, a,=0.0035. Thick solid line:

the harmonic withn=6 is taken into account.

T,=0.74, a,=0. Dashed lineT,=0.39, a,=—0.0035.
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251 as one can show, wheany number of harmonics is taken
into account. This fact will play an important part in Sec. IV.
Since a stationary DM soliton is an even function &f
then the stationary values of all its odd harmonics are zeros.
Following the lines above, we can arrive at a linear system of
the form (3.8 for the  vector Qu_;
:[élR!éll e !é(Zk—l)R!é(Zk—l)l]T! which describes small
oscillations involving the firsk odd harmonics. This system
must always have two zero eigenmodes. the modes with
zero eigenfrequencipsOne of them u(®)/ 47, corresponds
to a translation along, and the othergu(®/dw,, corre-

. sponds to a shift of the soliton’s frequency. 1&f be the
T, coefficients in the expansid.11) of the stationary solution
0 © i
050 u'*’. Then the above two zero eigenmodes can be shown to

be as follows:
FIG. 3. Nonzero eigenfrequencies of small oscillations near the

L5

0.57

stationary solution of Eq(3.8). u'® - 1
_ _ 30 4+ 1al?
w T n=1, n odd Zan_l (n 1)an+l
_ g2 .
AosechiflwoFEO SHa(£)e 72, (3.19 xcO(2)H,(£)e'", (3.203
(0) -

where the constant8,~1.057 andwy=2/m~0.798 are au_:_ 0 E Ea °)1+(n+1)§°)1
chosen so as to hawg=1 ands,=0. (One can also show dwg n=1n odd|2 " nt
that in that casesg=0.) Thus, forT,>1 and for not too 0) -
large |¢|, the truncated expansid8.18) yields an approxi- XCq (Z)Hn(£)E™, (3.200

mately sech-like profildthin solid line in Fig. 2. This is
consistent with Remark 5 in Sec. 1B about the lirfig
—oo, Next, as the minimum widtf; decreases, the size of
the fourth harmonic initially decreases, and the DM soliton s 0 Iy .

becomes closer to a Gaussian. By~0.74, the fourth har- Q=4 o/ (3.21
monic vanishes, and sufficiently close to its center the pulse

is very close to a Gaussidthick solid line in Fig. 2. The  for just the first odd harmonic clearly does have those two
contribution of the higher harmonics is expected to becomeero eigenmodes. However, once we include higher harmon-

and the phas# is the same as in the expansit¢hll).
The system

more pronounced at the pulse “tails” far enough from its ics (e.g., consideQs=[ax, . . . ,a5]"), then the resulting
center. Finally, forT,<0.74, a,g becomes negative, and truncated system no longer has modes with exactly zero
the pulse develops “wings.” Also note that sinfg9] eigenfrequencies. Instead, f@r; and Q5 we verified, using
. n MAPLE, that there are two eigenfrequencies whose magnitude
f e*“”§Hn(§)e*§2’2d§=&Hn(w)e*‘”z’z, is on the order of 0.1 and which may be complex for some
—o 27 To. The other eigenfrequencies are of order one and always

real for all To=(Ty). The nonvanishing of the two eigen-
then Eq.(3.18 also yields an approximate spectrum of thefrequencies in question can be attributed to our truncation of
DM soliton. This explains propertyii) stated in Sec. I.  an infinite, coupled system fa@ into a finite-dimensional
Namely, Eqs(3.16 and(3.18 describe a smooth transition gystem, and thus is a deficiency of our approach rather than
of the pulse shape from a hyperbolic secant to the Gaussiagy, ingication of any actual instability of the DM soliton. In

and then further to a shape with a higher time—bandwidth, . jts long-term stability has been verified in many numeri-
product. The latter part of the transition is manifested by the.5| simulations of Eq(2.1).

corresponding spectrum being broader at the to ade-
creases. Note that propertiji) is already explained by ex-  |v. PERTURBATION THEORY FOR THE DM SOLITON
pansion(2.11), from which it is clear that the pulse shape
will change depending on the value &{z) inside the map. A. Results

We also analyzed small oscillations about the stationary As noted in Sec. |, the main advantage of the DM tech-
solution of Eq.(3.8). The spectrum of these oscillations con- nique is that it significantly reduces the effect of perturba-
tains two zero eigenfrequencies and two paitsd) of non-  tions on a soliton. Below we derive explicit expressions that
zero eigenfrequencies. The latter are real for @&  allow one to calculate this effect forzperiodic(with period
=(To)er- In Fig. 3, we plotted the two different positive L,=1), but otherwise arbitrary perturbatid(r,z). Con-
eigenfrequencies of the systef®.8). When one takes into sider a perturbed equatid@.1)
account the next even harmonion=6), then one more
branch of oscillations, with a higher frequency, arises, while iUt ED(z)u " ED u.,+G(2)ulul?|=euR
the frequencies of the two “old” branches may change by no 2 € ot cpR-
more than 15% each. The two zero eigenfrequencies persist, (4.1
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where u<1 is a small parameter characterizing the size of(2.21)] to vary at a rate proportional {@. Consequently, the

the perturbation. The magnitudes efand . are not sup-  amplitudesa”’(T,) can also vary at the same rate. Note that
posed to be related, although for the consistency of our aphe variations ofA, and T, are related by Eq(2.293 and
proach, we should require that>e, in order to neglect thys are not independent. In order to simplify the subsequent
terms of ordere”. Following the approach of Sec. Il, one analysis and arrive at explicit expressions, below we will
obtains modified equations for the amplitudg®: only consider the case of a lossless fiber, whereby one has

Ag=—31sgnD,L,) for all Ty, and thusA,=0(ux?).

i 2(0) _
ia, " +{as beforg=uR;, (4.2 Since our calculations in Sec. Il have been carried out for
the harmonics witn<4, below we restrict the analysis only
where .
to those harmonics. For the vectors
1 [e@] 7t (= .
- —&—iv = ~ ~
Rn(z1) fo dz P _mng(g,z)Hn(g)e , d=e |Azl[ag(3,ag?)’ T
(4.3
and
and the phas& is the same as in the expansi@hll) [see
also Egs.(3.20]. The solution to systen@.2) is sought in 52 e—iAzl[go%) gotl)) T

the form

~ whereA is defined by Eqgs(3.2), one obtains the followin
aS‘O)ZQ"O)Jr“aS‘O)’ (4.4 linear system: Y k
wherea(®=al"(T,) are the expansion coefficients of the L ;

stationary unperturbed solutiarf®. As before, conditions 0=MO+S8- 0+ uR. (4.5)
(2.22, which now need to hold only in the zeroth ordegin

9uarantee that the equations for even- and odd-numberetirst, we specify the form of various terms in Eg.5) for
aﬁo) are decoupled. However, we now allow the parametergven harmonics. In that case, matkikis given by Eq.(3.9).

Ao, To, wg, {7e— woDo— wo[1sgn@;L,)+Ao]}, andg, The vectorS of the slow derivatives and the perturbation
= ¢— w2Dyz/2 [cf. the coefficients 0B(?); andal®) in Eq.  vectorR are given by the following formulas:

T

. T : T T :
S=|- 2—T°O§o°>,—<poa7)°’,—4—1f’o a?f”—48340)>,0,2—T°0 —all'+60ay), — poay’| , (4.6
R=[Ro,—RorRai ,—Ror,Rai . —Rugl", 4.7)
|
whereR,g=ReR,,R,=ImR, . Note thatgfﬁ)=0 for all n M 406=0o. (4.10
and, in additiona{%=0 for all oddn. The stationary ampli-
tude|ay?’] of the zeroth harmonic was denoted/ain Sec.  The expansion coefficients,(n=0, . . . ,4) andkg are func-

Il tions of z;. We will only require the forms oﬁo and G(A,,
Since Eq.(4.5) is linear, it can be analyzed in a great which can be easily found:

number of ways. Here, we chose to follow the method that

emphasizes both similarities to and differences from the per-  §,=10,1,0,0,0,0", 05=[Xor,0X2r,0X4gr,0]",

turbation theory for the NLSsee, e.g.[46] and remark 1 (4.10)
below). Specifically, the solution for Eq4.5) is sought in
the form wherexor ,Xor , X4r Satisfy the modified system
4
= - - Z > > ~
B kotio| K+ [ “Khiodstp| + 3 kipet Xor\ (1
0 n=1
(4.8 M| Xr | =| 0], (4.12
- X 0
Hereq, and\, are the eigenvectors and the eigenvalues of X4r
Mg:

and the matrixM 45 is that on the rhs of Eq(3.12. The
M40n=An0n, N=0,...,4 (4.9  explicit form of the entries ofj5, that involves the integrals
I,(Ty), is rather cumbersome. However, from the last equa-
with Ag=0, andﬁé is the associate eigenvector satisfying tion of the systen{4.12 one can conclude that
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17 Pran=0 if Ne*—An, 4.19

(P)Tq=plga=0  forall A\#0. (4.20

One can also directly verify that

Podo=(P)Tds=0, 4.213

Podo=(P) Tdo~Xor. (4.21b
i where the approximate equality in E@t.210 is obtained
with the use of Eqgs(4.17), (4.13, and (4.18. Moreover,
from Eqgs.(4.12 and(4.13 one finds that

-0.1-

Y 3
FIG. 4. Solutions of Eq(4.16. Solid line: y,;. Dashed line: alo—l2t 5l

Xor™

Yarl20. — 315 2lgl+ §lols— 315
X4r™=F5X2R (4.13 ) L,
; ; : ; XRS "1 2 3 1,2’ (4.22
which can indeed be confirmed by plotting these two quan- —3lg=2lgl+ Zlol4— 315

tities as functions off ; for Ty=(Tg)~0.39.
Next, one considers the solutions of the eigenvalue probwhere the expression fory is given in view of its possible
lem use in future work. By plotting the expression fegg for
MIBn=ArBo, (414  To=0.39, one can show thahr 0 in this range offy.
Finally, we substitute the expansida.8) into Eq. (4.5
which is adjoint to the eigenvalue problef®.9). Since the and use the orthogonality relatior4.19—(4.21) to obtain

eigenvlaues o, come in pairs ast\, then the eigenval- the following equations:
ues of Eq.(4.14) are the same as those of E4.9). In par-

tllcular, x:oﬁ is a double elggnvalge of qul.l4),.W|th.the (5§)Tao ko=(5§)T(M7€+§— ), (4.233
eigenvectomp, and the associate e|genvecp:8 being given
by

Baaaks=pi(uR+ &~ 0). (4.230

502[1a01§/2R101§/4R10]T- 532[0a§/o| ,0,§lz| a0,§/4|]T-

(4.19 In order for the perturbation vecta not to grow secularly
The entries in Eq(4.15 satisfy the following systems: in z,, one must require that,=kj=0, which with the use
of Eq. (4.6) yields
1| +1,+ 3| 3 | > |
aotl gl gl e | (5 (0 i &) 1
< T ) o Q()O>+2T0i + 5 (ay) — 48a)Yor
- D o oy | sl 1Sl 2To T/ 2
4’2 g% 640 727 1288 a0
(4.16 da
A +] 2l - 608+ 2Ty —— dT Var
Yo - STuR (4.24
~ ~ :pO/-L L] .
Mar| v | = Yer |- (4.17
Yai YaRr eo(a Vo +aya) = (pp) TR (4.29

From the first line of the systeif@.16 one can estimate that (recall thatg,(ﬁ)zo for all n). In Eq. (4.24), the magnitude of

(4.18 the second term in the square brackets is no more than about

6% of the magnitude of the first one sinlgeg| is small(cf.
which can be confirmed by plotting these quantmesTgr Fig. 4. The magnitude of the third term is less than 1% of
=0.39(see Fig. 4 Similarly, the quantitiegy, ,Y, ,¥4 can  that of the first term sincE(O) and_(o) are small todcf. Eq.
be shown to all have magnitudes of order one in the same3 16 and Fig. 1. Moreover, since the signs @, in the
range ofTy. second and the third terms are opposite, then the magnitude

In the standard way, one can establish the following orof these termsombineddoes not exceed 5% of the magni-
thogonality relations between the vect@randq: tude of the first term. Thus, with a 5% accuracy, one has

~ g
Yor™ 26Y4R
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0.5 1

5l

FIG. 5. The function in Eq(4.30. Note that in this figure, the
smallest value off ,=0.45>(T,),, in order to avoid the singularity
atTo=(To)er-

a9 430
Tl PRy
and similarly,
@0y Yo~ (pp) uR. (4.27)

Note that if the first two entries of the perturbation veckor
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o I, 3
M= 4,
o o (431
L | A . a7, [T
S= —Z—TO(Tc_woDo),—Two , (432
and
,ﬁ':[Rll T RlR]T- (4.33

Then, similarly to the even-harmonics case, we obtain

ay) .
2—-|-O(Tc_woDo)=MR1|' (4.34
al'T,,.
2 wo= — MRlR . (435)

Finally, as a simple application of our perturbation theory,
we consider the effect of fixed-frequency filters on a DM
soliton. The equation in question is then

1
ED()quLG(z)u|u|2

1
iu,+ ED(z)uTT+ €

(4.36

=€

iyu+i§u”),

have a much larger magnitude than its other entries, thefnereg is the filter strength ang is the excess gain needed

Eqgs.(4.26) and (4.27) can be simplified even further:

Tofa? _ dal®
TO( 2 TO dTO ,LLR0| ’ (4 28)
Poal~ — uRoR, (4.29

where Ry, and Ry are defined after Eq4.7). Using Eq.

(2.25), the coefficient of To/T,) in Eq. (4.28 is cast into
the form

ay’  _dag’|  ap’d(lTo) 30
2 °dT, ) 21, dT, °’ '

which is plotted in Fig. 5 fom{")=1. Note that for largdy,
when 1,—1, this function tends to the NLS limit, which
equals—1/2.

Now, as we turn to the analysis of E@.5 for the odd

harmonics, we note the following. First, as mentioned in Sec.

I, the analog of Eq(3.9) that would take into account the

to compensate for the effective diffusion introduced by the
filtering. Both B and y are assumed to be smalB,y
=0(u). The calculation of they term in the perturbation
vector R is straightforward, and that of thg term is also
carried out easily upon replacirfg, with (Dy—iB) in Eq.
(2.21). The relevant components & are as follows

1
Ro=i| y— =| — + w2 | |alY, (4.37a
2\ 212
w
Ry= TLOBQ(,O) , (4.379
R,=i %(&%4@4‘”), (4.379

0

Bl 9 2

15
R,=i a0 +i T—f&‘”. (4.379
0

1st, 3rd, and 5th harmonics dorst have zero eigenmodes, Following the argument presented after £4.25, we ob-
i.e., such eigenmodes whose eigenvalues are exactly zero.S¢rve that the perturbation equatiof#s26 can be reason-
is only Eq.(3.21) that has such eigenmodes. Second, theédbly well approximated by Ed4.28. Thus, one finds
preceding analysis for the even harmonics has shown that the

dominant contribution to the perturbation equatiqds26) . d(al)?T)/dT, 2

and(4.27 comes from the lowest harmonic, i.a{?). Simi- O @Y, ~2y=B| oot Z_TS . (4.383
larly, we can expect that it is the lowest odd harmoasif),

that should contribute the most to the perturbed evolution of 28

the parametersoy and 7.. Thus, we consider Eq4.5), W™~ — —; W. (4.38h

where now To
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Equations that are equivalent to these were earlier obtainedidth of its zeroth(purely Gaussianharmonic, i.e., it equals
by Matsumoto[14] (see also[13]) from the conservation T,\/1+A%Tg. Moreover, Eqs(3.18 and(3.16 provide an
laws for Eq.(4.36); cf. remark 3 below. accurate approximation for the soliton’s shape not too far
from its center [£]<3.5) andwhen the minimum widthr
of the soliton exceeds a certain threshold value. That thresh-
B. Remarks old value, To),~0.39, appears to be the same (as, at
First, we point out the difference of the above perturba-€ast, very close fothe threshold where the average disper-
tion theory from that for the NLS soliton. In the latter case, Sion in the system turns negative in order to suppguasi-
the zero eigenmodes of the linearized NLS correspond to thistationary propagation of a DM soliton. For narrower pulses
infinitesimal shifts of the four soliton parameters: the ampli-with To<<(To),, higher harmonicgwith n=6) significantly
tude (same as the inverse widttthe overall phase, the ve- contribute to the pulse shape.
locity (same as the frequengyand the center coordinate ~ We emphasize that all the results obtained in this work are
(see, e.9.[46)). In the case of the perturbed DM soliton, the explicit functions of the only paramet&g, provided that the
last two shift modes are easily recognized in the expressiongarameters of the dispersion map are fixed and there is as-
in Egs. (3.20. However, as we mentioned in Sec. I, thesesumed to be no losses in the fibgwhen the periodically
eigenmodes are indeed the zero eigenmodes for the correompensated losses are included into consideration, the
sponding truncated system of equatiamdy when the trun- above results can still be obtained by evaluating a small
cation is done at the lowest odd harmofiie., at that with number of certain definite integrals; cf. Eq.29 and
n=1). As for the shifts corresponding to the amplitude and(2.20.] Note that instead of varying the minimum pulse-
the overall phase, those are not the zero modes of their cowidth T, and keeping the dispersion map parameters fixed,
responding truncated system for two different reasons. Firsgne can equivalently vary the dispersion strengiyl(;
that system’s coefficients depend oh,, and hence —DjL;), while keeping the pulsewidth fixed. It is this later
aui?/aT, is not a zero mode. Second, the stationary value ofonvention that was adopted in most studies of the DM sys-
the coefficieng ") is found from the equation with a nonzero tems. The stronger dispersion maps in that convention corre-
ths[Eq. (3.12], hence&ug))/&goo is not a zero mode. spond to §hort¢r pulsdsmaller vaIu_es ofly) in our nota-
Second, the form of the function in E#.30 and that of tions. An invariant parameter, which can be proposed to

matrix M in Eq. (4.3) both present additional evidence that facilitate the; comparison _Of results obtained by dif_ferent re-
the results obtained in this section can be rigorouslyjustifiec‘feamh_ers' is the stretchlng factor of the '.DM soliton. Th's
_ : _ stretching factor can be defingt6] as the ratio of the maxi-

only for To>(Tg)=~0.39, sincd »((Tp) ) =0. S . i

Third, the perturbation equation4.28), (4.29, (4.39), mum and minimum widths of the pulse:
and(4.35 appear to be the same as the analoguous equations
that are obtained using either conservation laws or the varia- 5
tional method for Eq(4.1), with the form of the unperturbed S= 1 /1+ AmaX_ (5.1)
solution being taken as the Gaussid®,13,16. This con- T4
firms the validity of the results obtained in Ref44,13. It
also explains the very good agreement, foungbilp between
the experimentally measured GH jitter of the DM soliton andFor the lossless fiber\2,,=1/4; cf. Egs.(2.29 and (2.4).
its theoretical estimate, which was obtained in Réf. by = Thus, the stretching factor corresponding to the threshold
simply dividing the corresponding formula for the NLS soli- width (T)., equals
ton by the energy enhancement factof. the discussion in
[16]). We emphasize that even if one were to useekact
profile of the DM soliton to obtain the perturbation equations 1/4
from the conservation laws or the variational method, those Ser~ \/ 1+ @%3-43- (5.2
equations would still hold only approximatelglthough with '
good accuracy, as explained abpv&he reason for that,

which involves the orthogonality of the radiation modes tOSimiIarIy, that factor corresponding to the minimum width

the soliton, was discussed t6]. To=0.74 where the pulse is closest to the GausgirFig.
2)is

0

V. CONCLUSIONS

In this work, we have used the expansi@ll) over the
appropriate set of Hermite-Gaussian functions to represent a Seauee /1+ ﬂ~1 35 (5.3
pulse propagating in the strong DM regime. We foyBec. auss R '

II) that with just the first two lowest even harmonics, one

obtains the same conditions for the pulse stationary propaga-

tion as were earlier obtained by the variational method. TakNote that this is reasonably close to the vaBe1.5, which

ing into account the next even harmonic, we found the corwas reported in Ref8] for a numerically found DM soliton
rection [given by Egs.(3.3) and (3.17hH] to the above with an almost Gaussian spectrum.

conditions of stationary propagation. Note that the amplitude We also used our Hermite-Gaussian expansion to derive
of the DM soliton can be found from Eq&.18 and(3.16), (Sec. IV the equations for a perturbed evolution of the DM
whereas the width, given by E¢3.14), is the same as the soliton under a general perturbations. We showed that with
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an accuracy of about 5%, these equations can be also olidity of the approach based on the conservation laws or the
tained by considering the conservation laws for the correvariational method was far from obvious.

sponding evolution equation, where the form of the unper-

turbed soliton is taken as a chirped Gaussian pulse. This

justifies the results of earlier studifs,15,13,14, where the ACKNOWLEDGMENTS
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